Il Nuovo Cimento B (1971-1996)

, Volume 110, Issue 3, pp 253–264 | Cite as

BRST invariance and Poincaré-Cartan forms

  • M. Ferraris
  • M. Francaviglia
  • I. Volovich


BRST quantization of gauge theories is considered on the basis of Poincaré-Cartan forms in the framework of global variational calculus on fibred manifolds. It is pointed out that the BRST transformation admits a jet-prolonged formulation which is in fact a ≪generalized symmetry≫ of the BRST-invariant Lagrangian (a well-known concept in the framework of integrable systems). We show that the Poincaré-Cartan forms are invariant under this extended BRST transformation only modulo contact terms, which vanish on all sections anda fortiori on solutions of field equations.


04.50 Unified field theories and other theories of gravitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Becchi C., Rouet A. andStoea R.,Phys. Lett. B,52 (1974) 344.ADSCrossRefGoogle Scholar
  2. [2]
    Tyutin I. V., Lebedev preprint FIAN-39 (1975), unpublished.Google Scholar
  3. [3]
    Baulieu L.,Phys. Rep.,129 (1985) 1.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Stasheff J.,Bull. Am. Math. Soc,19 (1988) 287.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Henneaux M.,Classical Foundation of BRSTSymmetry, Monographs and Textbooks in Physical Science, Lecture Notes, Vol.7 (Bibliopolis, Napoli) 1988.Google Scholar
  6. [6]
    Henneaux M.,Commun. Math. Phys.,140 (1991) 1.MathSciNetADSCrossRefMATHGoogle Scholar
  7. [7]
    Ferraris M., inProceedings of the Conference on Differential Geometry and its Applications, Nové MĚsto, September 5–9, 1983; Part 2, Geometrical Methods in Physics, edited byD. Krupka (University J. E. Purkyne, Brno) 1984.Google Scholar
  8. [8]
    Kolar I.,J. Geom Phys.,1 (1984) 172.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Gotay M.,J. Diff. Geom. Appl.,1 (1991) 375.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Gotay M. andMarsden J. E., preprint (March 1992).Google Scholar
  11. [11]
    Ferraris M. andFrancaviglia M.,Class. Quantum Grav.,9 (1992) 79.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Witten E.,Mod. Phys. Lett. A,5 (1990) 487.ADSCrossRefGoogle Scholar
  13. [13]
    Marmo G., Saletan E., Simoni A. andVitale B.,Dynamical Systems. A Differential Geometric Approach to Symmetry and Reduction (J. Wiley & Sons) 1985.Google Scholar
  14. [14]
    Abraham R. andMarsden J. E.,Foundation of Mechanics, 2nd edition (Addison Wesley Publ. Co.) 1978.Google Scholar
  15. [15]
    Olver P., inDifferential Equations and Computer Algebra (Academic Press, London) 1991.Google Scholar
  16. [16]
    Cianci R., Francaviglia M. andVolovich I., to appear inJ. Phys. A (1995).Google Scholar
  17. [17]
    Cianci R., Francaviglia M. andVolovich I., in preparation.Google Scholar
  18. [18]
    Ferraris M. andFrancaviglia M.,J. Gen. Rel. Grav.,22 (1990) 965.MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    Cianci R., Francaviglia M. andVolovich I., in preparation.Google Scholar
  20. [20]
    Francaviglia M.,Relativistic Theories (The Variational Formulation), Quaderni del CNR-GNFM, Ravello Lecture Notes, 1988 (1990).Google Scholar
  21. [21]
    Prince G.,Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Torino, 1982, Vol.2, edited byS. Benenti,M. Francaviglia andA. Lichnerowicz (Tecnoprint, Bologna) 1983, p. 687.Google Scholar
  22. [22]
    Ferrario C. andPasserini A.,J. Geom Phys.,9 (1992) 21.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    Francaviglia M., inProceedings of the Conference on Constraints Theory and Quantization Methods, Montepulciano, 1998, edited byL. Lusanna et al. (World Scientific, Singapore) 1994, pp. 27–39.Google Scholar
  24. [24]
    Cianci R.,Introduction to Supermanifolds, Monographs and Textbooks in Physical Science, Lecture Notes, Vol.18 (Bibliopolis, Napoli) 1992.Google Scholar
  25. [25]
    Bartocci C., Bruzzo U. andHernandez-Ruiperez D.,The Geometry of Supermanifolds (Kluwer, Dordrecht) 1991.CrossRefGoogle Scholar
  26. [26]
    Vladimirov V. S. andVolovich I.,Theor. Math. Phys.,59 (1984) 3.MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • M. Ferraris
    • 1
  • M. Francaviglia
    • 1
  • I. Volovich
    • 1
    • 2
  1. 1.Istituto di Fisica Matematica≪J.- L. Lagrange≫ dell’UniversitàTorinoItaly
  2. 2.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations