Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 110, Issue 1, pp 17–21 | Cite as

Relativistic precession of the orbital perihelion revisited

  • J. M. Saca
Article

Summary

In this work the problem of the precession of the orbital perihelion predicted by the theory of general relativity is revisited. After finding an exact solution of the relativistic equation of motion of a particle moving under a gravitational force that varies inversely with the square of the distance to a fixed attraction centre of massM, a new relation for the angular precession is obtained in terms of a Keplerian or Newtonian ellipse parameters: the eccentricity ε and the semi-major axisa. Numerical values of the angular precession are given for Mercury and Venus. Finally, comparing these values with those given by the famous Einstein formula, it is concluded that a significant improvement is obtained which could be tested by experiments.

PACS

04.20 General relativity 

PACS

04.20.Jb Solutions to equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Weinberg S.,Gravitation and Cosmology (John Wiley & Sons, New York, N.Y.) 1972, p. 197.Google Scholar
  2. [2]
    Atwater H. A.,Introduction to General Relativity (Pergamon, Oxford) 1979, p. 107.MATHGoogle Scholar
  3. [3]
    Marion J. B.,Classical Dynamics of Particles and Systems (Academic Press, New York, N.Y.) 1965, p. 294.Google Scholar
  4. [4]
    Loedel E.,Fisica Relativista (Kapelusz, Buenos Aires) 1955, p. 354.Google Scholar
  5. [5]
    Van Bladel J.,Relativity and Engineering (Springer-Verlag, Berlin) 1984, p. 249.CrossRefGoogle Scholar
  6. [6]
    Synge J. L.,Relativity: The General Theory (North-Holland, Amsterdam) 1966, p. 293.MATHGoogle Scholar
  7. [7]
    Misner C. W., Thorne K. S. andWheeler J. A.,Gravitation (Freeman and Co., San Francisco, Cal.) 1973, p. 1112.Google Scholar
  8. [8]
    Yu-Hua Fu,Chin. Astron. Astrophys.,14 (1990) 207.ADSCrossRefGoogle Scholar
  9. [9]
    Atwater H. A.,Introduction to General Relativity (Pergamon, Oxford, 1979), sect. 4.2, p. 103 and sect. 4.3, p. 105.MATHGoogle Scholar
  10. [10]
    Marion J. B.,Classical Dynamics of Particles and Systems (Academic Press, New York, N.Y.) 1965, p. 291.Google Scholar
  11. [11]
    Harkings M. D.,Radio Sci.,14(1979) 671.ADSCrossRefGoogle Scholar
  12. [12]
    Atwater H. A.,Introduction to General Relativity (Pergamon, Oxford) 1979, sect. 3.9, p. 69.Google Scholar
  13. [13]
    Mathew J. andWalker R. L.,Mathematical Methods of Physics 2nd edition (W. A. Benjamin, Inc.) 1970, sect. 7.6, p. 204 and sect. 3.4, p. 75.Google Scholar
  14. [14]
    Weinberg S.,Gravitation and Cosmology (John Wiley & Sons, New York, N.Y.) 1972, Table 8.3, p. 198.Google Scholar
  15. [15]
    Marion J. B.,Classical Dynamics of Particles and Systems (Academic Press, New York, N.Y.) 1965, Table 10.1, p. 285.Google Scholar
  16. [16]
    Cohen E. R. andTaylor B. N.,Phys. Today,43 (1992) 9.Google Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • J. M. Saca
    • 1
  1. 1.Departamento de Fisica, NÚcleo de SucreUniversidad de OrienteCumanáVenezuela

Personalised recommendations