Il Nuovo Cimento A (1965-1970)

, Volume 44, Issue 2, pp 363–373 | Cite as

Noncompact extensions of symmetry groups

  • P. Budini


A method is proposed for the determination of the energy spectrum of a quantum-mechanical system with algebraic methods based on the knowledge of its symmetry properties. The proposed method is applied to simple maximal degenerate systems like the harmonic oscillator and the hydrogen atom. For the latter the generators of theSO(4, 1) dynamical algebra are explicitly given.


Symmetry Algebra Casimir Operator Maximal Compact Subgroup Unitary Irreducible Representation Relativistic Generalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Si propone un metodo per la determinazione dello spettro di energia di un sistema meccanico quantistico con metodi algebrici basati sulla conoscenza delle sue proprietà di simmetria. Il metodo è applicato a semplici sistemi massimamente degeneri come l’oscillatore armonico e l’atomo di idrogeno. Per questi ultimi i generatori dell’algebraSO(4, 1) che genera lo spettro sono dati esplicitamente.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A. Salam, R. Delbourgo andJ. Strathdee:Proc. Roy. Soc. London, A284, 146 (1965);R. Dashen andM. Gell-Mann:Phys. Lett.,17, 142 (1965);P. Budini andC. Fronsdal:Phys. Rev. Lett.,14, 968 (1965).ADSMathSciNetCrossRefGoogle Scholar
  2. (2).
    A. O. Barut, P. Budini andC. Fronsdal: Trieste preprint IC/65/34;Y. Dothan andY. Ne’eman: CALT-68-41 preprint.Google Scholar
  3. (3).
    W. Pauli,Zeits. Phys.,36, 336 (1926);V. Fock:Zeits. Phys.,98, 145 (1935);V. Bargmann:Zeits. Phys.,99, 576 (1936).ADSCrossRefGoogle Scholar
  4. (4).
    J. M. Jauch:Thesis (1939);H. J. Lipkin:Lie Groups for Pedestrians (Amsterdam, 1965), p. 57 and following.Google Scholar
  5. (5).
    R. Rączka: Trieste preprint IC/65/80 (ICTP).Google Scholar
  6. (6).
    L. H. Thomas:Ann. Math.,42, 113 (1940).CrossRefGoogle Scholar
  7. (7).
    T. D. Newton:Ann. Math.,51, 730 (1949).CrossRefGoogle Scholar
  8. (8).
    J. Dixmier:Bull. Soc. Math. Fr.,89, 9 (1961).MathSciNetGoogle Scholar
  9. (9).
    R. E. Cutkosky:Phys. Rev.,96, 1135 (1954).ADSMathSciNetCrossRefGoogle Scholar
  10. (10).
    J. Schwinger:Journ. Math. Phys.,5, 1606 (1964).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1966

Authors and Affiliations

  • P. Budini
    • 1
  1. 1.International Atomic Energy AgencyInternational Centre for Theoretical PhysicsTrieste

Personalised recommendations