Molecular Biotechnology

, Volume 7, Issue 3, pp 231–240 | Cite as

High-level expression of a cDNA for human granulocyte colony-stimulating factor in Chinese hamster ovary cells

Effect of 3′-noncoding sequences
  • Luigi Rotondaro
  • Luana Mazzanti
  • Antonio Mele
  • Giovanni Rovera


We compared the production of recombinant human granulocyte colony-stimulating factor (rhG-CSF) by Chinese hamster ovary (CHO) cells in a transient expression system, using different analogous vectors carrying a human G-CSF-encoding cDNA under the transcriptional control of the murine cytomegalovirus (CMV) major immediate early promoter. Comparison of two transcription units carrying a human (h)G-CSF cDNA deleted of 3′-untranslated (UTR) sequences containing AT-rich elements (ARE) and using 3′-UTR sequences for processing of transcripts from the SV40 early region or from the rabbit β1-globin gene showed that use of the sequences from the rabbit β1-globin gene resulted in 7- to 12-fold higher levels of rhG-CSF production. Deletion of ARE of hG-CSF cDNA resulted in increased rhG-CSF synthesis when transcription units using 3′-UTR sequences from the rabbit β1-globin gene were compared. By contrast, deletion of ARE did not appear to affect rhG-CSF production when 3′-UTR sequences from the SV40 early region were used. The most efficient G-CSF transcription unit, fused to a dihydrofolate reductase (DHFR) marker gene and transfected into a CHO cell line, yielded initial transfectant CHO cell lines secreting up to 21 μg rhG-CSF/1 ×106 cells in 24 h. After two rounds of DHFR gene amplification, a cell line was isolated that contains approx 12 copies of the vector and produces rhG-CSF at a rate of 90 μg/1 × 106 cells in 24 h.

Index Entries

Recombinant DNA plasmid vectors transfection gene amplification cytokine AT-rich elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Linch, D. C., Scarffe, H., Proctor, S., Chopra, R., Taylor, P. R. A., Morgenstern, G., Cunningham, D., Burnett, A. K., Cawley, J. C., Franklin, I. M., Bell, A. J., Lister, T. A., Marcus, R. E., Newland, A. C., Parker, A. C., and Yver, A. (1993) Randomized vehicle-controlled dose-finding study of glycosylated recombinant granulocyte colony-stimulating factor after bone marrow transplantation.Bone Marrow Transplant. 11, 307–311.PubMedGoogle Scholar
  2. 2.
    Kubota, N., Orita, T., Hattori, K., Oh-eda, M., Ochi, N., and Yamazaki, T. (1990) Structural characterization of natural and recombinant human granulocyte-colony stimulating factors.J. Biochem. 107, 486–492.PubMedGoogle Scholar
  3. 3.
    Oh-eda, M., Hasegawa, M., Hattori, K., Kuboniwa, H., Kojima, T., Orita, T., Tomonou, K., Yamazaki, T., and Ochi, N. (1990) O-linked sugar chain of human granulocyte-colony stimulating factor protects it against polymerization and denaturation allowing it to retain its biological activity.J. Biol. Chem. 265, 11,432–11,435.Google Scholar
  4. 4.
    Van Heuvel, M., Bosveld, I. J., Trapman, J., and Zwarthoff, E. C. (1986) Transient expression of murine interferon-alpha genes in mouse and monkey cells.Gene 45, 159–165.PubMedCrossRefGoogle Scholar
  5. 5.
    Carswell, S. and Alwine, J. C. (1989) Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences.Mol. Cell. Biol. 9, 4248–4258.PubMedGoogle Scholar
  6. 6.
    Rotondaro, L., Mele, A., and Rovera, G. (1996) Efficiency of different viral promoters in directing gene expression in mammalian cells: effect of 3′-untranslated sequences.Gene 168, 195–198.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen, C.-Y. A. and Shyu, A.-B. (1995) AU-rich elements: characterization and importance in mRNA degradation.Trends Biochem. Sci. 20, 465–470.PubMedCrossRefGoogle Scholar
  8. 8.
    Shaw, G. and Kamen, R. (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation.Cell 46, 659–667.PubMedCrossRefGoogle Scholar
  9. 9.
    Karasuyama, H. and Melchers, F. (1988) Establishment of mouse cell lines which constitutely secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors.Eur. J. Immunol. 18, 97–104.PubMedCrossRefGoogle Scholar
  10. 10.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989)Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  11. 11.
    Tweardy, D. J., Cannizzaro, L. A., Palumbo, A. P., Shane, S., Huebner, K., Vantuinen, P., Ledbetter, D. H., Finan, J. B., Nowell, P. C., and Rovera, G. (1987) Molecular cloning and characterization of a cDNA for human granulocyte colony-stimulating factor (G-CSF) from a glioblastoma multiforme cell line and localization of the G-CSF gene to chromosome band 17q21.Oncogene Res. 1, 209–220.PubMedGoogle Scholar
  12. 12.
    Dorsch-Häsler, K., Keil, G. M., Weber, F., Jasin, M., Schaffner, W., and Koszinowski, U. H. (1985) A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus.Proc. Natl. Acad. Sci. USA 82, 8325–8329.PubMedCrossRefGoogle Scholar
  13. 13.
    Rohrbaugh, M. L., Johnson III, J. E., James, M. D., and Hardison, R. C. (1985) Transcription unit of the rabbit β1 globin gene.Mol. Cell. Biol. 5, 147–160.PubMedGoogle Scholar
  14. 14.
    Urlaub, G. and Chasin, L.A. (1980) Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity.Proc. Natl. Acad. Sci. USA 77, 4216–4220.PubMedCrossRefGoogle Scholar
  15. 15.
    Gorman, C. M., Moffat, L. F., and Howard, B. H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells.Mol. Cell. Biol. 2, 1044–1051.PubMedGoogle Scholar
  16. 16.
    Valtieri, M., Tweardy, D. J., Caracciolo, D., Johnson, K., Mavilio, F., Altmann, S., Santoli, D., and Rovera, G. (1987) Cytokine-dependent granulocytic differentiation.J. Immunol. 138, 3829–3835.PubMedGoogle Scholar
  17. 17.
    Gibco BRL (1989) Composition of the 1kb DNA ladder.Focus 11, 36.Google Scholar
  18. 18.
    Asselbergs, F. A. M., Will, H., Wingfield, P., and Hirschi, M. (1986) A recombinant Chinese hamster ovary cell line containing a 300-fold amplified tetramer of the hepatitis B genome together with a double selection marker expresses high levels of viral protein.J. Mol. Biol. 189, 401–411.PubMedCrossRefGoogle Scholar
  19. 19.
    Bendig, M. M. (1988) The production of foreign proteins in mammalian cells.Genet. Eng. 7, 91–127.PubMedGoogle Scholar
  20. 20.
    Tsuchiya, M., Nomura, H., Asano, S., Kaziro, Y., and Nagata, S. (1987) Characterization of recombinant human granulocyte-colony-stimulating factor produced in mouse cells.EMBO J. 6, 611–616.PubMedGoogle Scholar
  21. 21.
    Yamazaki, T., Nagata, S., and Tsuchiya, M. (1987) Human granulocyte colony stimulating factor. EP 0 220 520 A1.Google Scholar
  22. 22.
    Kabnick, K. S. and Housman, D. E. (1988) Determinants that contribute to cytoplasmic stability of human c-fos and β-globin mRNAs are located at several sites in each mRNA.Mol. Cell. Biol. 8, 3244–3250.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Luigi Rotondaro
    • 1
  • Luana Mazzanti
    • 2
  • Antonio Mele
    • 1
  • Giovanni Rovera
    • 3
  1. 1.Department of BiotechnologyMenarini Ricerche S.p.A.Pomezia (Roma)Italy
  2. 2.SUDBIOTEC S.r.l.Pomezia (Roma)Italy
  3. 3.The Wistar InstitutePhiladelphia

Personalised recommendations