Skip to main content
Log in

The modulation of calcium currents by the activation of mGluRs

Functional implications

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glutamatergic transmission in the central nervous system (CNS) is mediated by ionotropic, ligand-gated receptors (iGluRs), and metabotropic receptors (mGluRs). mGluRs are coupled to GTP-binding regulatory proteins (G-proteins) and modulate different second messenger pathways. Multiple effects have been described following their activation; among others, regulation of fast synaptic transmission, changes in synaptic plasticity, and modification of the threshold for seizure generation. Some of the major roles played by the activation of mGluRs might depend on the modulation of high-voltage-activated (HVA) calcium (Ca2+) currents. Some HVA Ca2+ channels (N-, P-, and Q-type channels) are signaling components at most presynaptic active zones. Their mGluR-mediated inhibition reduces synaptic transmission. The interference, by agonists at mGluRs, on L-type channels might affect the repetitive neuronal firing behavior and the integration of complex events at the somatic level. In addition, the mGluR-mediated effects on voltagegated Ca2+ signals have been suggested to strongly influence neurotoxicity. Rather different coupling mechanisms underlie the relation between mGluRs and Ca2+ currents: Together with a fast, membrane-delimited mechanism of action, much slower responses, involving intracellular second messengers, have also been postulated. In the recent past, the relative paucity of selective agonists and antagonists for the different subclasses of mGluRs had hampered the clear definition of the roles of mGluRs in brain function. However, the recent availability of new pharmacological tools is promising to provide a better understanding of the neuronal functions related to different mGluR subtypes. The analysis of the mGluR-mediated modulation of Ca2+ conductances will probably offer new insights into the characterization of synaptic transmission and the development of neuroprotective agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ambrosini A., Bresciani L., Fracchia S., Brunello N., an Racagni C. (1995) Metabotropic glutamate receptors negatively coupled to adenylate cyclase inhibit N-methyl-d-aspartate receptor activity and prevent neurotoxicity in mesencephalic neurons in vitro.Mol. Pharmacol. 47, 1057–1064.

    PubMed  CAS  Google Scholar 

  • Aniksztejin L., Otani S., and Ben-Ary Y. (1992) Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long-term potentiation through protein kinase C.Eur. J. Neurosci. 4, 500–505.

    Article  Google Scholar 

  • Bashir Z. I., Bortolotto Z. A., Davies C. H., Berreta N., Irving A. J., Seal A. J., Henley J. M., Jane D. E., Watkins J. C., and Collingridge G. L. (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors.Nature 363, 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Baskys A. and Malenka R. C. (1991) Agonists at the metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus.J. Physiol. 444, 687–701.

    PubMed  CAS  Google Scholar 

  • Bear M. F., Finn S. F., and Broullet E., (1993) Evidence for the involvement of metabotropic glutamate receptors in striatal excitotoxic lesions in vivo.Neurodegeneration 2, 81–91.

    Google Scholar 

  • Bear M. F. and Malenka R. C. (1994) Synaptic plasticity: LTD and LTP.Curr. Opin. Neurobiol. 4, 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Bear M. F. (1995) Mechanisms for a sliding synaptic modification threshold.Neuron 5, 1–4.

    Article  Google Scholar 

  • Ben-Ari Y. and Aniksztejn L. (1995) Role of glutamate metabotropic receptors in long-term potentiation in the hippocampus.Sem. Neurosci. 7.

  • Bruno V., Copani A., Battaglia G., Raffaele R., Shinozaki H., and Nicoletti F. (1994) Protective effect of the metabotropic glutamate receptor agonist, DCG-IV, against excitotoxic neuronal death.Eur. J. Pharmacol. 256, 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Bruno V., Battaglia G., Copani A., Giffard R. G., Raciti G., Raffaele R., Shinozaki H., and Nicoletti F. (1995a) Activation of class II or class III metabotropic glutamate receptors protects cultured cortical neurons against excitotoxic degeneration.Eur. J. Neurosci. 7, 1906–1913.

    Article  PubMed  CAS  Google Scholar 

  • Buisson A. and Choi D. W. (1995b) The inhibitory mGluR agonist, S-4-carboxy-3-phenylglycine selectively attenuates NMDA neurotoxicity and oxygen-glucose deprivation-induced neuronal death.Neuropharmacology 34, 1081–1087.

    Article  PubMed  CAS  Google Scholar 

  • Buisson A., Yu S. P., and Choi D. W. (1996) DCG-IV selectively attenuates rapidly triggered NMDA-induced neurotoxicity in cortical neurons.Eur. J. Neurosci. 8, 138–143.

    Article  PubMed  CAS  Google Scholar 

  • Burke J. P. and Hablitz J. J. (1994) Presynaptic depression of synaptic transmission mediated by activation of metabotropic glutamate receptors in rat neocortex.J. Neurosci. 14, 5120–5130.

    PubMed  CAS  Google Scholar 

  • Calabresi P., Mercuri N. B., and Bernardi G. (1992a) Activation of quisqualate metabotropic receptors reduces glutamate and GABA-mediated synaptic potentials in the rat striatum.Neurosci. Lett. 139, 107–110.

    Article  Google Scholar 

  • Calabresi P., Maj R., Pisani A., Mercuri N. B., and Bernardi G. (1992b) Long-term synaptic depression in the striatum: physiological and pharmacological characterization.J. Neurosci. 12, 4224–4233.

    PubMed  CAS  Google Scholar 

  • Calabresi P., Pisani A., Mercuri N. B., and Bernardi G. (1993) Heterogeneity of glutamate metabotropic receptors in the striatum: electrophysiological evidences.Eur. J. Neurosci. 5, 1370–1377.

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P., Pisani A., Mercuri N. B., and Bernardi G. (1994) Post-receptor mechanisms underlying striatal long-term depression.J. Neurosci. 14, 4871–4881.

    PubMed  CAS  Google Scholar 

  • Calabresi P., Pisani A., Stefani A., Mercuri N. B., and Bernardi G. (1996) The corticostriatal projection: from synaptic plasticity to basal ganglia dysfunction.TINS 19, 19–24.

    PubMed  CAS  Google Scholar 

  • Catania M. V., Landwehrmeyer G. B., Testa C. M., Standaert D. G., Penney J. B. Jr., and Young A. B. (1994) Metabotropic glutamate receptors are differentially regulated during development.Neuroscience 61, 481–495.

    Article  PubMed  CAS  Google Scholar 

  • Chavis P., Shinozaki H., Bockaert J., and Fagni L. (1994) The metabotropic glutamate receptor type 2/3 inhibit L-type calcium channels via a Pertussis toxin-sensitive G-protein in cultured cerebellar granule cells.J. Neurosci. 14, 7067–7076.

    PubMed  CAS  Google Scholar 

  • Chavis P., Nooney J. M., Bockaert J., Fagni L., Feltz A., and Bossu J.-L. (1995) Facilitatory coupling between a glutamate metabotropic receptor and dihydropyridine-sensitive calcium channels in cultured cerebellar granule cells.J. Neurosci. 15, 135–143.

    PubMed  CAS  Google Scholar 

  • Choi S. and Lovinger D. M. (1996) Metabotropic glutamate receptor modulation of voltage-gated Ca2+ channels involves multiple receptor subtypes in cortical neurons.J. Neurosci. 16, 36–45.

    PubMed  CAS  Google Scholar 

  • Copani A., Bruno V., Battaglia G., Lesmza G., Pellitteri R., Russo A., Stanzani S., and Nicoletti F. (1995) Activation of metabotropic glutamate receptors by B-amyloid peptide.Mol. Pharmacol. 47, 890–897.

    PubMed  CAS  Google Scholar 

  • Fagni L., Bossu L., and Bockaert J. (1991) Activation of a large conductance Ca2+-dependent K+ channel by stimulation of glutamate phosphoinositide-coupled receptors in cultured cerebellar granule cells.Eur. J. Neurosci. 3, 778–789.

    Article  PubMed  Google Scholar 

  • Forster A. C. and Fagg G. E. (1984) Acidic amino acid binding sites in mammalian neuronal membranes. Their characteristics and relationship to synaptic receptors.Brain Res. Rev. 10, 103–164.

    Article  Google Scholar 

  • Hay M. and Kunze D. L. (1994) Glutamate metabotropic receptor inhibition of voltagegated calcium currents in visceral sensory neurons.J. Neurophysiol. 72, 421–430.

    PubMed  CAS  Google Scholar 

  • Hayashi Y., Tanabe Y., Aramori I., Masu M., Shimamoto K., Ohfune Y., and Nakanishi S. (1992) Agonist analysis of 2-(carboxycyclopropyl)glycine isomers for cloned glutamate receptor subtypes expressed in Chinese hamster ovary cells.Br. J. Pharmacol. 107, 539–543.

    PubMed  CAS  Google Scholar 

  • Hille B. (1994) Modulation of ion-channel function by G-protein-coupled receptors.Trends Neurosci. 17, 531–536.

    Article  PubMed  CAS  Google Scholar 

  • Hollman M. and Heinemann S. (1994) Cloned glutamate receptors.Ann. Rev. Neurosci. 17, 31–108.

    Article  Google Scholar 

  • Howe A. R. and Surmeier D. J. (1995) Muscarimic receptors modulate N-,P-, and L-type Ca2+ currents but not structured neurons through parallel pathways.J. Neurosci. 15, 458–469.

    PubMed  CAS  Google Scholar 

  • Ikeda S. R., Lovinger D. M., McCool B. A., and Lewis D. L. (1995) Heterologous expression of metabotropic glutamate receptors in adult rat sympathetic neurons: subtype-specific coupling to ion channels.Neuron 14, 1029–1038.

    Article  PubMed  CAS  Google Scholar 

  • Kaba H., Hayashi Y., Higuchi T., and Nakanishi S. (1994) Induction of an olfactory memory by the activation of a metabotropic glutamate receptor.Science 265, 262–264.

    Article  PubMed  CAS  Google Scholar 

  • Kimura M., Yamanishi Y., Hanada T., Kagaya T., Kuwada M., Watanabe T., Katayama K., and Nishizawa Y. (1995) Involvement of P-type calcium channels in high-potassium-elicited release of neurotransmitters from rat brain slices.Neuroscience 66, 609–615.

    Article  PubMed  CAS  Google Scholar 

  • Kinzie J. M., Saugstad J. A., Westbrook G. L., and Segerson T. P. (1995) Distribution of metabotropic glutamate receptor 7 messenger RNA in the developing and adult rat brain.Neuroscience 69, 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Koh J.-H., Palmer E., and Cotman C. W. (1991) Activation of the metabotropic glutamate receptor attenuates N-methyl-d-aspartate neurotoxicity in cortical cultures.Proc. Natl. Acad. Sci. USA 88, 9431–9435.

    Article  PubMed  CAS  Google Scholar 

  • Koerner J. F. and Cotman C. W. (1981) Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex.Brain Res. 216, 192–198.

    Article  PubMed  CAS  Google Scholar 

  • Lachica E. A., Rubsamen R., Zirpel L., and Rubel E. W. (1995) Glutamatergic inhibition of voltage-operated calcium channels in the avian cochlear nucleus.J. Neurosci. 15, 1724–1734.

    PubMed  CAS  Google Scholar 

  • Lester D. J. and Jahr C. E. (1990) Quisqualate receptor-mediated depression of calcium currents in hippocampal neurons.Neuron 4, 741–749.

    Article  PubMed  CAS  Google Scholar 

  • Linden D. J. (1994) Long-term depression in the mammalian brain.Neuron 12, 457–472.

    Article  PubMed  CAS  Google Scholar 

  • Lipscombe D., Longsamut S., and Tsien R. W. (1989) Alpha-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium channel gating.Nature 340, 639–642.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi G., Alesiani M., Leonardi P., Cherici G., Pelliciari R., and Moroni F. (1993) Pharmacological characterization of the metabotropic glutamate receptor inhibiting D-(H)-aspartate output in the striatum.Br. J. Pharmacol. 110, 1407–1412.

    PubMed  CAS  Google Scholar 

  • Lovinger D. M. (1991) Trans-ACPD decreases synaptic excitation in striatal slices through a presynaptic action.Neurosci. Lett. 129, 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Lovinger D. M. and McCool B. A. (1995) Metabotropic glutamate receptor-mediated presynaptic depression at corticostriatal synapsed involves mGluR2 or 3.J. Neurophysiol. 73, 1076–1081.

    PubMed  CAS  Google Scholar 

  • Manzoni O., Fagni L., Oin J. P., Rassendren F., Poulat F., Sladeczek F., and Bockaert J. (1990) (trans)-1-amino-cyclopentyl-1,3-dicarboxylate stimulates quisqualate phosphonoinositide-coupled receptors but not ionotropic glutamate receptors in striatal neurons and Xenopus oocytes.Mol. Pharmacol. 38, 1–6.

    PubMed  CAS  Google Scholar 

  • Manzoni O. J. J., Poulat F., Do E., Sahuquet A. S., Bockaert J., and Sladeczek J (1994) Pharmacological characterization of the quisqualate receptor coupled to phospholipase C (Qp) in striatal neurons.Eur. J. Pharmacol. 207, 231–241.

    Google Scholar 

  • Masu M., Tanabe Y., Tsuchida K., Shigemoto R., and Nakanishi S. (1991) Sequence and expression of a metabotropic glutamate receptors.Nature 349, 760–765.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S. (1992) Molecular diversity of glutamate receptors and implications for brain functions.Science 258, 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S. (1994) Metabotropic glutamate receptors: synaptic transmission, modulation and plasticity.Neuron 13, 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  • Nawy S. and Jahr C. E. (1990) Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells.Nature 346, 269–271.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti F., Iadarola M. J., Wroblewski J. T., and Costa E. (1986a) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with a-1-adrenoreceptors.Proc. Natl. Acad. Sci. USA 83, 1931–1935.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti F., Wroblewski J. T., Novelli A., Alho H., and Guidotti A. (1986b) The activation of inositol phospholipid metabolism as a signal-transduction system for excitatory amino acids in primary cultures of cerebellar granule cells.J. Neurosci. 6, 1905–1911.

    PubMed  CAS  Google Scholar 

  • O’Connor J. J., Rowan M. J. and Anwyl R. (1994) Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation.Nature 367, 557–559.

    Article  PubMed  CAS  Google Scholar 

  • Orlando L. R., Standaert D. G., Penney J. E. N., and Young A. B. (1995) Metabotropic receptors in excitotoxicity: (S)-4-carboxy-3-hydroxyphenylglycine (S-4C3HPG) protects against rat stri-atal quinolinic acid lesions.Neurosci. Lett. 202, 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Palmer E., Monaghan D. T., and Cotman C. W. (1989) Trans-ACPD, a selective agonist of the phosphonoinositide-coupled excitatory amino acid receptor.Eur. J. Pharmac. 166, 585–587.

    Article  CAS  Google Scholar 

  • Pearce B., Albrecht J., Morrow C., and Murphy S. (1986) Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux.Neurosci. Lett. 72, 335–340.

    Article  PubMed  CAS  Google Scholar 

  • Pin J. P. and Duvoisin R. (1995) The metabotropic glutamate receptor: structure and functions.Neuropharmacol. 34, 1–26.

    Article  CAS  Google Scholar 

  • Pisani A., Stefani A., Gattoni G., Tolu M., Mercuri N. B., Bernardi G., and Calabresi P. (1995) Long-term depression in the striatum: a synaptic model of motor memory, inMolecular and Cellular Mechanisms of Neostriatal Function (Ariano M. A. and Surmeier D. J., eds.), Springer-Verlag, pp. 229–239.

  • Pisani A., Calabresi P., Centonze D., and Bernardi G. (1995) Enhancement of NMDA responses by group I metabotropic glutamate receptors in striatal neurons,

  • Rothe T., Bigl V., and Grantyn R. (1994) Potentiating and depressant effects of metabotropic glutamate receptor agonists on high-voltage-activated calcium currents in cultured retinal gangliar neurons from postnatal mice.Pflug. Arch. 146, 161–170.

    Article  Google Scholar 

  • Sahara Y. and Westbrook G. L. (1993) Modulation of calcium currents by a metabotropic glutamate receptor involves fast and slow kinetic components in cultured hippocampal neurons.J. Neurosci. 13, 3041–3050.

    PubMed  CAS  Google Scholar 

  • Sayer R. J., Schwindt P. C., and Crill M. E. (1992) Metabotropic glutamate receptor-mediated suppression of L-type calcium current in acutely isolated neocortical neurons.J. Neurophysiol. 68, 833–842.

    PubMed  CAS  Google Scholar 

  • Saugstadt J. D., Kinzie J. M., Mulvihill E. R., Segerson T. D., and Westbrook G. L. (1994) Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptor.Mol. Pharmacol. 45, 367–372.

    Google Scholar 

  • Schoepp D. D., Bockaert J., and Sladeczek F. (1990) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors.Trends Pharmacol. Sci. 11, 508–515.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp D. D. and Conn P. J. (1993) Metabotropic glutamate receptors in brain function and pathology.Trends Pharmacol. Sci. 14, 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp D. D. (1994) Novel functions for subtypes of metabotropic glutamate receptors.Neurochem. Int. 24, 439–449.

    Article  PubMed  CAS  Google Scholar 

  • Sladeczek F., Pin J.-P., Recasens M., Bockaert J., and Weiss S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurons.Nature 317, 717–719.

    Article  PubMed  CAS  Google Scholar 

  • Stefani A., Pisani A., Mercuri N. B., Bernardi G., and Calabresi P. (1994) Activation of metabotropic glutamate receptors inhibits calcium currents and GABA-mediated synaptic potentials in striatal neurons.J. Neurosci. 14, 6734–6743.

    PubMed  CAS  Google Scholar 

  • Stefani A., Spadoni F., and Bernardi G. (1996a) L-AP4 inhibits high-voltage-activated Ca2+ currents in pyramidal cortical neurons.NeuroReport 7, 421–424.

    Article  PubMed  CAS  Google Scholar 

  • Stefani A., Spadoni F., and Bernardi G. (1996b) On the modulation of cortical HVA calcium currents by agonists at group III mGluRs.Neuroscience, submitted for publication.

  • Sugiyama H., Ito I., and Hirono C. (1987) A new type of glutamate receptor linked to inositol phospholipid metabolism.Nature 325, 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Swartz K. J. and Bean B. P. (1992) Inhibition of calcium channels in rat CA3 pyramidal neurons by a metabotropic glutamate receptor.J. Neurosci. 366, 4358–4371.

    Google Scholar 

  • Swartz K. J., Merritt A., Bean B. P., and Lovinger D. M. (1993) Protein kinase C modulates glutamate receptor inhibition of Ca2+ channels and synaptic transmission.Nature 361, 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T. and Momiyama A. (1993) Different types of calcium channels mediated central synaptic transmission.Nature 366, 156–158.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y., Nomura A., Masu M., Shigemoto R., Mizuno N., and Nakanishi S. (1993) Signal transduction, pharmacological properties and expression patterns of two rats metabotropic glutamate receptors, mGluR3 and mGluR4.J. Neurosci. 13, 1372–1378.

    PubMed  CAS  Google Scholar 

  • Toselli M., Lang J., Costa T., and Lux H. D. (1989) Direct modulation of voltage-dependent calcium channels by muscarinic activation of pertussis toxin-sensitive G protein in hippocampal neurons.Pflug. Arch. 415, 255–261.

    Article  CAS  Google Scholar 

  • Trombley P. Q. and Westbrook G. L. (1992) L-AP4 inhibits calcium currents and synaptic transmission via a G-protein coupled glutamate receptors.J. Neurosci. 12, 2943–2950.

    Google Scholar 

  • Turner T. J., Adams M. E., and Dunlap K. (1993) Multiple Ca channel types coexist to regulate synaptosomal neurotransmitter release.Proc. Natl. Acad. Sci. USA 90, 9518–9522.

    Article  PubMed  CAS  Google Scholar 

  • Vazquez E., Herrero I., Miras-Portugal M. T., and Sanchez-Prieto J. (1995) Developmental changes from inhibition to facilitation in the presynaptic control of glutamate exocytosis by metabotropic glutamate receptors.Neuroscience 68, 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler D. B., Randall A., and Tsien R. W. (1994) Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission.Science 264, 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Zheng F. and Gallagher J. P. (1992) Metabotropic glutamate receptors are required for the induction of long-term potentiation.Neuron 9, 163–172.

    Article  PubMed  CAS  Google Scholar 

  • Zheng F., Lonart G., Johnson K. M., and Gallagher J. P. (1994) (1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) induces burst firing via an inositol-1,4,5-triphosphate-independent pathway at rat dorsolateral septal nuclei.Neuropharmacology 33, 97–102.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefani, A., Pisani, A., Mercuri, N.B. et al. The modulation of calcium currents by the activation of mGluRs. Mol Neurobiol 13, 81–95 (1996). https://doi.org/10.1007/BF02740753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740753

Index Entries

Navigation