Advertisement

Molecular Neurobiology

, Volume 13, Issue 1, pp 81–95 | Cite as

The modulation of calcium currents by the activation of mGluRs

Functional implications
  • Alessandro Stefani
  • Antonio Pisani
  • Nicola B. Mercuri
  • Paolo Calabresi
Article

Abstract

Glutamatergic transmission in the central nervous system (CNS) is mediated by ionotropic, ligand-gated receptors (iGluRs), and metabotropic receptors (mGluRs). mGluRs are coupled to GTP-binding regulatory proteins (G-proteins) and modulate different second messenger pathways. Multiple effects have been described following their activation; among others, regulation of fast synaptic transmission, changes in synaptic plasticity, and modification of the threshold for seizure generation. Some of the major roles played by the activation of mGluRs might depend on the modulation of high-voltage-activated (HVA) calcium (Ca2+) currents. Some HVA Ca2+ channels (N-, P-, and Q-type channels) are signaling components at most presynaptic active zones. Their mGluR-mediated inhibition reduces synaptic transmission. The interference, by agonists at mGluRs, on L-type channels might affect the repetitive neuronal firing behavior and the integration of complex events at the somatic level. In addition, the mGluR-mediated effects on voltagegated Ca2+ signals have been suggested to strongly influence neurotoxicity. Rather different coupling mechanisms underlie the relation between mGluRs and Ca2+ currents: Together with a fast, membrane-delimited mechanism of action, much slower responses, involving intracellular second messengers, have also been postulated. In the recent past, the relative paucity of selective agonists and antagonists for the different subclasses of mGluRs had hampered the clear definition of the roles of mGluRs in brain function. However, the recent availability of new pharmacological tools is promising to provide a better understanding of the neuronal functions related to different mGluR subtypes. The analysis of the mGluR-mediated modulation of Ca2+ conductances will probably offer new insights into the characterization of synaptic transmission and the development of neuroprotective agents.

Index Entries

HVA Ca2+ conductances neurotransmission neuroprotection rat metabotropic receptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosini A., Bresciani L., Fracchia S., Brunello N., an Racagni C. (1995) Metabotropic glutamate receptors negatively coupled to adenylate cyclase inhibit N-methyl-d-aspartate receptor activity and prevent neurotoxicity in mesencephalic neurons in vitro.Mol. Pharmacol. 47, 1057–1064.PubMedGoogle Scholar
  2. Aniksztejin L., Otani S., and Ben-Ary Y. (1992) Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long-term potentiation through protein kinase C.Eur. J. Neurosci. 4, 500–505.CrossRefGoogle Scholar
  3. Bashir Z. I., Bortolotto Z. A., Davies C. H., Berreta N., Irving A. J., Seal A. J., Henley J. M., Jane D. E., Watkins J. C., and Collingridge G. L. (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors.Nature 363, 347–350.PubMedCrossRefGoogle Scholar
  4. Baskys A. and Malenka R. C. (1991) Agonists at the metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus.J. Physiol. 444, 687–701.PubMedGoogle Scholar
  5. Bear M. F., Finn S. F., and Broullet E., (1993) Evidence for the involvement of metabotropic glutamate receptors in striatal excitotoxic lesions in vivo.Neurodegeneration 2, 81–91.Google Scholar
  6. Bear M. F. and Malenka R. C. (1994) Synaptic plasticity: LTD and LTP.Curr. Opin. Neurobiol. 4, 389–399.PubMedCrossRefGoogle Scholar
  7. Bear M. F. (1995) Mechanisms for a sliding synaptic modification threshold.Neuron 5, 1–4.CrossRefGoogle Scholar
  8. Ben-Ari Y. and Aniksztejn L. (1995) Role of glutamate metabotropic receptors in long-term potentiation in the hippocampus.Sem. Neurosci. 7.Google Scholar
  9. Bruno V., Copani A., Battaglia G., Raffaele R., Shinozaki H., and Nicoletti F. (1994) Protective effect of the metabotropic glutamate receptor agonist, DCG-IV, against excitotoxic neuronal death.Eur. J. Pharmacol. 256, 109–112.PubMedCrossRefGoogle Scholar
  10. Bruno V., Battaglia G., Copani A., Giffard R. G., Raciti G., Raffaele R., Shinozaki H., and Nicoletti F. (1995a) Activation of class II or class III metabotropic glutamate receptors protects cultured cortical neurons against excitotoxic degeneration.Eur. J. Neurosci. 7, 1906–1913.PubMedCrossRefGoogle Scholar
  11. Buisson A. and Choi D. W. (1995b) The inhibitory mGluR agonist, S-4-carboxy-3-phenylglycine selectively attenuates NMDA neurotoxicity and oxygen-glucose deprivation-induced neuronal death.Neuropharmacology 34, 1081–1087.PubMedCrossRefGoogle Scholar
  12. Buisson A., Yu S. P., and Choi D. W. (1996) DCG-IV selectively attenuates rapidly triggered NMDA-induced neurotoxicity in cortical neurons.Eur. J. Neurosci. 8, 138–143.PubMedCrossRefGoogle Scholar
  13. Burke J. P. and Hablitz J. J. (1994) Presynaptic depression of synaptic transmission mediated by activation of metabotropic glutamate receptors in rat neocortex.J. Neurosci. 14, 5120–5130.PubMedGoogle Scholar
  14. Calabresi P., Mercuri N. B., and Bernardi G. (1992a) Activation of quisqualate metabotropic receptors reduces glutamate and GABA-mediated synaptic potentials in the rat striatum.Neurosci. Lett. 139, 107–110.CrossRefGoogle Scholar
  15. Calabresi P., Maj R., Pisani A., Mercuri N. B., and Bernardi G. (1992b) Long-term synaptic depression in the striatum: physiological and pharmacological characterization.J. Neurosci. 12, 4224–4233.PubMedGoogle Scholar
  16. Calabresi P., Pisani A., Mercuri N. B., and Bernardi G. (1993) Heterogeneity of glutamate metabotropic receptors in the striatum: electrophysiological evidences.Eur. J. Neurosci. 5, 1370–1377.PubMedCrossRefGoogle Scholar
  17. Calabresi P., Pisani A., Mercuri N. B., and Bernardi G. (1994) Post-receptor mechanisms underlying striatal long-term depression.J. Neurosci. 14, 4871–4881.PubMedGoogle Scholar
  18. Calabresi P., Pisani A., Stefani A., Mercuri N. B., and Bernardi G. (1996) The corticostriatal projection: from synaptic plasticity to basal ganglia dysfunction.TINS 19, 19–24.PubMedGoogle Scholar
  19. Catania M. V., Landwehrmeyer G. B., Testa C. M., Standaert D. G., Penney J. B. Jr., and Young A. B. (1994) Metabotropic glutamate receptors are differentially regulated during development.Neuroscience 61, 481–495.PubMedCrossRefGoogle Scholar
  20. Chavis P., Shinozaki H., Bockaert J., and Fagni L. (1994) The metabotropic glutamate receptor type 2/3 inhibit L-type calcium channels via a Pertussis toxin-sensitive G-protein in cultured cerebellar granule cells.J. Neurosci. 14, 7067–7076.PubMedGoogle Scholar
  21. Chavis P., Nooney J. M., Bockaert J., Fagni L., Feltz A., and Bossu J.-L. (1995) Facilitatory coupling between a glutamate metabotropic receptor and dihydropyridine-sensitive calcium channels in cultured cerebellar granule cells.J. Neurosci. 15, 135–143.PubMedGoogle Scholar
  22. Choi S. and Lovinger D. M. (1996) Metabotropic glutamate receptor modulation of voltage-gated Ca2+ channels involves multiple receptor subtypes in cortical neurons.J. Neurosci. 16, 36–45.PubMedGoogle Scholar
  23. Copani A., Bruno V., Battaglia G., Lesmza G., Pellitteri R., Russo A., Stanzani S., and Nicoletti F. (1995) Activation of metabotropic glutamate receptors by B-amyloid peptide.Mol. Pharmacol. 47, 890–897.PubMedGoogle Scholar
  24. Fagni L., Bossu L., and Bockaert J. (1991) Activation of a large conductance Ca2+-dependent K+ channel by stimulation of glutamate phosphoinositide-coupled receptors in cultured cerebellar granule cells.Eur. J. Neurosci. 3, 778–789.PubMedCrossRefGoogle Scholar
  25. Forster A. C. and Fagg G. E. (1984) Acidic amino acid binding sites in mammalian neuronal membranes. Their characteristics and relationship to synaptic receptors.Brain Res. Rev. 10, 103–164.CrossRefGoogle Scholar
  26. Hay M. and Kunze D. L. (1994) Glutamate metabotropic receptor inhibition of voltagegated calcium currents in visceral sensory neurons.J. Neurophysiol. 72, 421–430.PubMedGoogle Scholar
  27. Hayashi Y., Tanabe Y., Aramori I., Masu M., Shimamoto K., Ohfune Y., and Nakanishi S. (1992) Agonist analysis of 2-(carboxycyclopropyl)glycine isomers for cloned glutamate receptor subtypes expressed in Chinese hamster ovary cells.Br. J. Pharmacol. 107, 539–543.PubMedGoogle Scholar
  28. Hille B. (1994) Modulation of ion-channel function by G-protein-coupled receptors.Trends Neurosci. 17, 531–536.PubMedCrossRefGoogle Scholar
  29. Hollman M. and Heinemann S. (1994) Cloned glutamate receptors.Ann. Rev. Neurosci. 17, 31–108.CrossRefGoogle Scholar
  30. Howe A. R. and Surmeier D. J. (1995) Muscarimic receptors modulate N-,P-, and L-type Ca2+ currents but not structured neurons through parallel pathways.J. Neurosci. 15, 458–469.PubMedGoogle Scholar
  31. Ikeda S. R., Lovinger D. M., McCool B. A., and Lewis D. L. (1995) Heterologous expression of metabotropic glutamate receptors in adult rat sympathetic neurons: subtype-specific coupling to ion channels.Neuron 14, 1029–1038.PubMedCrossRefGoogle Scholar
  32. Kaba H., Hayashi Y., Higuchi T., and Nakanishi S. (1994) Induction of an olfactory memory by the activation of a metabotropic glutamate receptor.Science 265, 262–264.PubMedCrossRefGoogle Scholar
  33. Kimura M., Yamanishi Y., Hanada T., Kagaya T., Kuwada M., Watanabe T., Katayama K., and Nishizawa Y. (1995) Involvement of P-type calcium channels in high-potassium-elicited release of neurotransmitters from rat brain slices.Neuroscience 66, 609–615.PubMedCrossRefGoogle Scholar
  34. Kinzie J. M., Saugstad J. A., Westbrook G. L., and Segerson T. P. (1995) Distribution of metabotropic glutamate receptor 7 messenger RNA in the developing and adult rat brain.Neuroscience 69, 167–176.PubMedCrossRefGoogle Scholar
  35. Koh J.-H., Palmer E., and Cotman C. W. (1991) Activation of the metabotropic glutamate receptor attenuates N-methyl-d-aspartate neurotoxicity in cortical cultures.Proc. Natl. Acad. Sci. USA 88, 9431–9435.PubMedCrossRefGoogle Scholar
  36. Koerner J. F. and Cotman C. W. (1981) Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex.Brain Res. 216, 192–198.PubMedCrossRefGoogle Scholar
  37. Lachica E. A., Rubsamen R., Zirpel L., and Rubel E. W. (1995) Glutamatergic inhibition of voltage-operated calcium channels in the avian cochlear nucleus.J. Neurosci. 15, 1724–1734.PubMedGoogle Scholar
  38. Lester D. J. and Jahr C. E. (1990) Quisqualate receptor-mediated depression of calcium currents in hippocampal neurons.Neuron 4, 741–749.PubMedCrossRefGoogle Scholar
  39. Linden D. J. (1994) Long-term depression in the mammalian brain.Neuron 12, 457–472.PubMedCrossRefGoogle Scholar
  40. Lipscombe D., Longsamut S., and Tsien R. W. (1989) Alpha-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium channel gating.Nature 340, 639–642.PubMedCrossRefGoogle Scholar
  41. Lombardi G., Alesiani M., Leonardi P., Cherici G., Pelliciari R., and Moroni F. (1993) Pharmacological characterization of the metabotropic glutamate receptor inhibiting D-(H)-aspartate output in the striatum.Br. J. Pharmacol. 110, 1407–1412.PubMedGoogle Scholar
  42. Lovinger D. M. (1991) Trans-ACPD decreases synaptic excitation in striatal slices through a presynaptic action.Neurosci. Lett. 129, 17–21.PubMedCrossRefGoogle Scholar
  43. Lovinger D. M. and McCool B. A. (1995) Metabotropic glutamate receptor-mediated presynaptic depression at corticostriatal synapsed involves mGluR2 or 3.J. Neurophysiol. 73, 1076–1081.PubMedGoogle Scholar
  44. Manzoni O., Fagni L., Oin J. P., Rassendren F., Poulat F., Sladeczek F., and Bockaert J. (1990) (trans)-1-amino-cyclopentyl-1,3-dicarboxylate stimulates quisqualate phosphonoinositide-coupled receptors but not ionotropic glutamate receptors in striatal neurons and Xenopus oocytes.Mol. Pharmacol. 38, 1–6.PubMedGoogle Scholar
  45. Manzoni O. J. J., Poulat F., Do E., Sahuquet A. S., Bockaert J., and Sladeczek J (1994) Pharmacological characterization of the quisqualate receptor coupled to phospholipase C (Qp) in striatal neurons.Eur. J. Pharmacol. 207, 231–241.Google Scholar
  46. Masu M., Tanabe Y., Tsuchida K., Shigemoto R., and Nakanishi S. (1991) Sequence and expression of a metabotropic glutamate receptors.Nature 349, 760–765.PubMedCrossRefGoogle Scholar
  47. Nakanishi S. (1992) Molecular diversity of glutamate receptors and implications for brain functions.Science 258, 597–603.PubMedCrossRefGoogle Scholar
  48. Nakanishi S. (1994) Metabotropic glutamate receptors: synaptic transmission, modulation and plasticity.Neuron 13, 1031–1037.PubMedCrossRefGoogle Scholar
  49. Nawy S. and Jahr C. E. (1990) Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells.Nature 346, 269–271.PubMedCrossRefGoogle Scholar
  50. Nicoletti F., Iadarola M. J., Wroblewski J. T., and Costa E. (1986a) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with a-1-adrenoreceptors.Proc. Natl. Acad. Sci. USA 83, 1931–1935.PubMedCrossRefGoogle Scholar
  51. Nicoletti F., Wroblewski J. T., Novelli A., Alho H., and Guidotti A. (1986b) The activation of inositol phospholipid metabolism as a signal-transduction system for excitatory amino acids in primary cultures of cerebellar granule cells.J. Neurosci. 6, 1905–1911.PubMedGoogle Scholar
  52. O’Connor J. J., Rowan M. J. and Anwyl R. (1994) Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation.Nature 367, 557–559.PubMedCrossRefGoogle Scholar
  53. Orlando L. R., Standaert D. G., Penney J. E. N., and Young A. B. (1995) Metabotropic receptors in excitotoxicity: (S)-4-carboxy-3-hydroxyphenylglycine (S-4C3HPG) protects against rat stri-atal quinolinic acid lesions.Neurosci. Lett. 202, 109–112.PubMedCrossRefGoogle Scholar
  54. Palmer E., Monaghan D. T., and Cotman C. W. (1989) Trans-ACPD, a selective agonist of the phosphonoinositide-coupled excitatory amino acid receptor.Eur. J. Pharmac. 166, 585–587.CrossRefGoogle Scholar
  55. Pearce B., Albrecht J., Morrow C., and Murphy S. (1986) Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux.Neurosci. Lett. 72, 335–340.PubMedCrossRefGoogle Scholar
  56. Pin J. P. and Duvoisin R. (1995) The metabotropic glutamate receptor: structure and functions.Neuropharmacol. 34, 1–26.CrossRefGoogle Scholar
  57. Pisani A., Stefani A., Gattoni G., Tolu M., Mercuri N. B., Bernardi G., and Calabresi P. (1995) Long-term depression in the striatum: a synaptic model of motor memory, inMolecular and Cellular Mechanisms of Neostriatal Function (Ariano M. A. and Surmeier D. J., eds.), Springer-Verlag, pp. 229–239.Google Scholar
  58. Pisani A., Calabresi P., Centonze D., and Bernardi G. (1995) Enhancement of NMDA responses by group I metabotropic glutamate receptors in striatal neurons,Google Scholar
  59. Rothe T., Bigl V., and Grantyn R. (1994) Potentiating and depressant effects of metabotropic glutamate receptor agonists on high-voltage-activated calcium currents in cultured retinal gangliar neurons from postnatal mice.Pflug. Arch. 146, 161–170.CrossRefGoogle Scholar
  60. Sahara Y. and Westbrook G. L. (1993) Modulation of calcium currents by a metabotropic glutamate receptor involves fast and slow kinetic components in cultured hippocampal neurons.J. Neurosci. 13, 3041–3050.PubMedGoogle Scholar
  61. Sayer R. J., Schwindt P. C., and Crill M. E. (1992) Metabotropic glutamate receptor-mediated suppression of L-type calcium current in acutely isolated neocortical neurons.J. Neurophysiol. 68, 833–842.PubMedGoogle Scholar
  62. Saugstadt J. D., Kinzie J. M., Mulvihill E. R., Segerson T. D., and Westbrook G. L. (1994) Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptor.Mol. Pharmacol. 45, 367–372.Google Scholar
  63. Schoepp D. D., Bockaert J., and Sladeczek F. (1990) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors.Trends Pharmacol. Sci. 11, 508–515.PubMedCrossRefGoogle Scholar
  64. Schoepp D. D. and Conn P. J. (1993) Metabotropic glutamate receptors in brain function and pathology.Trends Pharmacol. Sci. 14, 13–20.PubMedCrossRefGoogle Scholar
  65. Schoepp D. D. (1994) Novel functions for subtypes of metabotropic glutamate receptors.Neurochem. Int. 24, 439–449.PubMedCrossRefGoogle Scholar
  66. Sladeczek F., Pin J.-P., Recasens M., Bockaert J., and Weiss S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurons.Nature 317, 717–719.PubMedCrossRefGoogle Scholar
  67. Stefani A., Pisani A., Mercuri N. B., Bernardi G., and Calabresi P. (1994) Activation of metabotropic glutamate receptors inhibits calcium currents and GABA-mediated synaptic potentials in striatal neurons.J. Neurosci. 14, 6734–6743.PubMedGoogle Scholar
  68. Stefani A., Spadoni F., and Bernardi G. (1996a) L-AP4 inhibits high-voltage-activated Ca2+ currents in pyramidal cortical neurons.NeuroReport 7, 421–424.PubMedCrossRefGoogle Scholar
  69. Stefani A., Spadoni F., and Bernardi G. (1996b) On the modulation of cortical HVA calcium currents by agonists at group III mGluRs.Neuroscience, submitted for publication.Google Scholar
  70. Sugiyama H., Ito I., and Hirono C. (1987) A new type of glutamate receptor linked to inositol phospholipid metabolism.Nature 325, 531–533.PubMedCrossRefGoogle Scholar
  71. Swartz K. J. and Bean B. P. (1992) Inhibition of calcium channels in rat CA3 pyramidal neurons by a metabotropic glutamate receptor.J. Neurosci. 366, 4358–4371.Google Scholar
  72. Swartz K. J., Merritt A., Bean B. P., and Lovinger D. M. (1993) Protein kinase C modulates glutamate receptor inhibition of Ca2+ channels and synaptic transmission.Nature 361, 165–168.PubMedCrossRefGoogle Scholar
  73. Takahashi T. and Momiyama A. (1993) Different types of calcium channels mediated central synaptic transmission.Nature 366, 156–158.PubMedCrossRefGoogle Scholar
  74. Tanabe Y., Nomura A., Masu M., Shigemoto R., Mizuno N., and Nakanishi S. (1993) Signal transduction, pharmacological properties and expression patterns of two rats metabotropic glutamate receptors, mGluR3 and mGluR4.J. Neurosci. 13, 1372–1378.PubMedGoogle Scholar
  75. Toselli M., Lang J., Costa T., and Lux H. D. (1989) Direct modulation of voltage-dependent calcium channels by muscarinic activation of pertussis toxin-sensitive G protein in hippocampal neurons.Pflug. Arch. 415, 255–261.CrossRefGoogle Scholar
  76. Trombley P. Q. and Westbrook G. L. (1992) L-AP4 inhibits calcium currents and synaptic transmission via a G-protein coupled glutamate receptors.J. Neurosci. 12, 2943–2950.Google Scholar
  77. Turner T. J., Adams M. E., and Dunlap K. (1993) Multiple Ca channel types coexist to regulate synaptosomal neurotransmitter release.Proc. Natl. Acad. Sci. USA 90, 9518–9522.PubMedCrossRefGoogle Scholar
  78. Vazquez E., Herrero I., Miras-Portugal M. T., and Sanchez-Prieto J. (1995) Developmental changes from inhibition to facilitation in the presynaptic control of glutamate exocytosis by metabotropic glutamate receptors.Neuroscience 68, 117–124.PubMedCrossRefGoogle Scholar
  79. Wheeler D. B., Randall A., and Tsien R. W. (1994) Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission.Science 264, 107–111.PubMedCrossRefGoogle Scholar
  80. Zheng F. and Gallagher J. P. (1992) Metabotropic glutamate receptors are required for the induction of long-term potentiation.Neuron 9, 163–172.PubMedCrossRefGoogle Scholar
  81. Zheng F., Lonart G., Johnson K. M., and Gallagher J. P. (1994) (1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) induces burst firing via an inositol-1,4,5-triphosphate-independent pathway at rat dorsolateral septal nuclei.Neuropharmacology 33, 97–102.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Alessandro Stefani
    • 1
    • 2
  • Antonio Pisani
    • 1
  • Nicola B. Mercuri
    • 1
  • Paolo Calabresi
    • 1
  1. 1.Clinica NeurologicaUniversità di Tor VergataRome
  2. 2.RCCS Clinica Santa LuciaRomeItaly

Personalised recommendations