Molecular Neurobiology

, Volume 13, Issue 1, pp 1–22 | Cite as

Synaptic transmission and plasticity in the amygdala

An emerging physiology of fear conditioning circuits
  • Stephen Maren


Numerous studies in both rats and humans indicate the importance of the amygdala in the acquisition and expression of learned fear. The identification of the amygdala as an essential neural substrate for fear conditioning has permitted neurophysiological examinations of synaptic processes in the amygdala that may mediate fear conditioning. One candidate cellular mechanism for fear conditioning is long-term potentiation (LTP), an enduring increase in synaptic transmission induced by high-frequency stimulation of excitatory afferents. At present, the mechanisms underlying the induction and expression of amygdaloid LTP are only beginning to be understood, and probably involve both theN-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subclasses of glutamate receptors. This article will examine recent studies of synaptic transmission and plasticity in the amygdala in an effort to understand the relationships of these processes to aversive learning and memory.

Index Entries

Amygdala long-term potentiation glutamate receptors learning memory rats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe K., Nakata A., Mizutani A., and Saito H. (1994) Facilitatory but nonessential role of the muscarinic cholinergic system in the generation of long-term potentiation of population spikes in the dentate gyrus in vivo.Neuropharmacology 33, 847–852.PubMedGoogle Scholar
  2. Applegate C. D., Frysinger R. C., Kapp B. S., and Gallagher M. (1982) Multiple unit activity recorded from amygdala central nucleus during Pavlovian heart rate conditioning in rabbit.Brain Res. 238, 457–462.PubMedGoogle Scholar
  3. Asprodini E. K., Rainnie D. G., and Shinnick-Gallagher P. (1992) Epileptogenesis reduces the sensitivity of presynaptic GABAB receptors on glutamatergic afferents in the amygdala.J. Pharmacol. Exp. Ther. 262, 1011–1021.PubMedGoogle Scholar
  4. Barrionuevo G. and Brown T. H. (1983) Associative long-term potentiation in hippocampal slices.Proc. Natl. Acad. Sci. USA 80, 7347–7351.PubMedGoogle Scholar
  5. Bechara A., Tranel D., Damasio H., Adolphs R., Rockland C., and Damasio A. R. (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans.Science 269, 1115–1118.PubMedGoogle Scholar
  6. Bernard J.-F., Alden M., and Besson J.-M. (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: aPhaseolus vulgaris leucoagglutinin (PHA-L) study in the rat.J. Comp. Neurol. 329, 201–229.PubMedGoogle Scholar
  7. Bernard J. F. and Besson J. M. (1990) The spino (trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes.J. Neurophysiol. 63, 473–490.PubMedGoogle Scholar
  8. Blanchard D. C. and Blanchard R. J. (1972) Innate and conditioned reactions to threat in rats with amygdaloid lesions.J. Comp. Physiol. Psychol. 81, 281–290.PubMedGoogle Scholar
  9. Bliss T. V. and Collingridge G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus.Nature (Lond.) 361, 31–39.Google Scholar
  10. Brady J. V., Schreiner L., Geller I., and Kling A. (1954) Subcortical mechanisms in emotional behavior: the effect of rhinencephalic injury upon the acquisition and retention of a conditioned avoidance response in cats.J. Comp. Physiol. Psychol. 47, 179–186.PubMedGoogle Scholar
  11. Brodal A. (1947) The amygdaloid nucleus in the rat.J. Comp. Neurol. 87, 1–16.Google Scholar
  12. Brothers L. A. and Finch D. M. (1985) Physiological evidence for an excitatory pathway from entorhinal cortex to amygdala in the rat.Brain Res. 359, 10–20.PubMedGoogle Scholar
  13. Brown T. H., Chapman P. F., Kairiss E. W., and Keenan C. L. (1988) Long-term synaptic potentiation.Science 242, 724–728.PubMedGoogle Scholar
  14. Brown T. H., Kairiss E. W., and Keenan C. L. (1990) Hebbian synapses: biophysical mechanisms and algorithms.Ann. Rev. Neurosci. 13, 475–511.PubMedGoogle Scholar
  15. Campeau S. and Davis M. (1995) Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli.J. Neurosci. 15, 2301–2311.PubMedGoogle Scholar
  16. Campeau S., Miserendino M. J., and Davis M. (1992) Intra-amygdala infusion of theN-methyl-d-aspartate receptor antagonist AP5 blocks acquisition but not expression of fear-potentiated startle to an auditory conditioned stimulus.Behav. Neurosci. 106, 569–574.PubMedGoogle Scholar
  17. Canteras N. S. and Swanson L. W. (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat.J. Comp. Neurol. 324, 180–194.PubMedGoogle Scholar
  18. Cassell M. D. and Gray T. S. (1989) Morphology of peptide-immunoreactive neurons in the rat central nucleus of the amygdala.J. Comp. Neurol. 281, 320–333.PubMedGoogle Scholar
  19. Cassell M. D., Gray T. S., and Kiss J. Z. (1986) Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study.J. Comp. Neurol. 246, 478–499.PubMedGoogle Scholar
  20. Chapman P. F. and Bellavance L. L. (1992) Induction of long-term potentiation in the basolateral amygdala does not depend on NMDA receptor activation.Synapse 11, 310–318.PubMedGoogle Scholar
  21. Chapman P. F., Kairiss E. W., Keenan C. L., and Brown T. H. (1990) Long-term synaptic potentiation in the amygdala.Synapse 6, 271–278.PubMedGoogle Scholar
  22. Clugnet M. C. and LeDoux J. E. (1990) Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body.J. Neurosci. 10, 2818–2824.PubMedGoogle Scholar
  23. Clugnet M. C., LeDoux J. E., and Morrison S. F. (1990) Unit responses evoked in the amygdala and striatum by electrical stimulation of the medial geniculate body.J. Neurosci. 10, 1055–1061.PubMedGoogle Scholar
  24. Davis M. (1992) The role of the amygdala in fear and anxiety.Ann. Rev. Neurosci. 15, 353–375.PubMedGoogle Scholar
  25. Davis M., Rainnie D., and Cassell M. (1994) Neurotransmission in the rat amygdala related to fear and anxiety.Trends Neurosci. 17, 208–214.PubMedGoogle Scholar
  26. Diamond D. M. and Rose G. M. (1994) Does associative LTP underlie classical conditioning?Psychobiol. 22, 263–269.Google Scholar
  27. Fanselow M. S. (1993) Associations and memories: the role of NMDA receptors and long-term potentiation.Curr. Dir. Psychol. Sci.,2, 152–156.Google Scholar
  28. Fanselow M. S. and Kim J. J. (1994) Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonistd,l-2-amino-5-phosphonovaleric acid to the basolateral amygdala.Behav. Neurosci. 108, 210–212.PubMedGoogle Scholar
  29. Farb C. R., Aoki C., and LeDoux J. E. (1995) Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala: a light and electron microscopic study.J. Comp. Neurol. 362, 86–108.PubMedGoogle Scholar
  30. Fuster J. M. and Uyeda A. A. (1971) Reactivity of limbic neurons of the monkey to appetitive and aversive signals.Electroencephalo. Clin. Neurophysiol. 30, 281–293.Google Scholar
  31. Gallistel C. R. (1995) Is long-term potentiation a plausible basis for memory?, inBrain and Memory: Modulation and Mediation of Neuroplasticity (McGaugh J. L., Weinberger N. M., and Lynch G., eds.), Oxford University Press, New York, pp. 328–337.Google Scholar
  32. Gean P.-W. and Chang F.-C. (1992) Pharmacological characterization of excitatory synaptic potentials in rat basolateral amygdaloid neurons.Synapse 11, 1–9.PubMedGoogle Scholar
  33. Gean P.-W., Huang C.-C., Lin J.-H., and Tsai J.-J. (1992) Sustained enhancement of NMDA receptor-mediated synaptic potential by isoproterenol in rat amygdalar slices.Brain Res. 594, 331–334.PubMedGoogle Scholar
  34. Gean P. W., Chang, F. C., Huang C. C., Lin J. H., and Way L. J. (1993a) Long-term enhancement of EPSP and NMDA receptor-mediated synaptic transmission in the amygdala.Brain Res. Bull. 31, 7–11.PubMedGoogle Scholar
  35. Gean P. W., Chang F. C., and Hung C. R. (1993b) Use-dependent modification of a slow NMDA receptor-mediated synaptic potential in rat amygdalar slices.J. Neurosci. 34, 635–641.Google Scholar
  36. Gean P. W. and Shinnick-Gallagher P. (1987) Picrotoxin induced epileptiform activity in amygdaloid neurons.Neurosci. Lett. 73, 149–154.PubMedGoogle Scholar
  37. Groenewegen H. J. and Berendse H. W. (1994) The specificity of the “nonspecific” midline and intralaminar thalamic nuclei.Trends Neurosci. 17, 52–57.PubMedGoogle Scholar
  38. Heth D. C. and Rescorla R. A. (1973) Simultaneous and backward fear conditioning in the rat.J. Comp. Physiol. Psychol. 82, 434–443.Google Scholar
  39. Hitchcock J. and Davis M. (1986) Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm.Behav. Neurosci. 100, 11–22.PubMedGoogle Scholar
  40. Huang C.-C. and Gean P.-W. (1994) Paired-pulse depression of theN-methyl-d-aspartate receptor-mediated synaptic potentials in the amygdala.Br. J. Pharmacol. 113, 1029–1035.PubMedGoogle Scholar
  41. Huang C.-C., Hsu K.-S., and Gean P.-W. (1996) Isoproterenol potentiates synaptic transmission primarily by enhancing presynaptic calcium influx via P- and/or Q-type calcium channels in the rat amygdala.J. Neurosci. 16, 1026–1033.PubMedGoogle Scholar
  42. Huang C.-C., Tsai J.-J., and Gean P.-W. (1994) Actions of isoproterenol on amygdalar neuronsin vitro.Clin. J. Physiol. 37, 73–78.Google Scholar
  43. Iwata J., Chida K., and LeDoux J. E. (1987) Cardiovascular responses elicited by stimulation of the neurons in the central amygdaloid nucleus in the awake but not anesthetized rats resemble conditioned emotional responses.Brain Res. 418, 183–188.PubMedGoogle Scholar
  44. Iwata J., LeDoux J. E., Meeley M. P., Arneric S., and Reis D. J. (1986) Intrinsic neurons in the amygdaloid field projected to by the medial geniculate body mediate emotional responses conditioned to acoustic stimuli.Brain Res. 383, 195–214.PubMedGoogle Scholar
  45. Jerusalinsky D., Ferreira M. B., Walz R., Da Silva R. C., Bianchin M., Ruschel A. C., Zanatta M. S., Medina J. H., and Izquierdo I. (1992) Amnesia by post-training infusion of glutamate receptor antagonists into the amygdala, hippocampus, and entorhinal cortex.Behav. Neural Biol. 58, 76–80.PubMedGoogle Scholar
  46. Kapp B. S., Gallagher M., Underwood M. D., McNall C. L., and Whitehorn D. (1982) Cardiovascular responses elicited by electrical stimulation of the amygdala central nucleus in the rabbit.Brain Res. 234, 251–262.PubMedGoogle Scholar
  47. Kapp B. S., Whalen P. J., Supple W. F., and Pascoe J. P. (1992) Amygdaloid contributions to conditioned arousal and sensory information processing, inThe Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (Aggleton J. P., ed.), Wiley-Liss, New York, pp. 229–254.Google Scholar
  48. Kelley A. E., Domesick V. B., and Nauta J. H. (1982) The amygdalostriatal projection in the rat: an anatomical study by anterograde and retrograde tracing methods.Neuroscience 7, 615–630.PubMedGoogle Scholar
  49. Kellicutt M. H. and Schwartzbaum J. S. (1963) Formation of a conditioned emotional response (CER) following lesions of the amygdaloid complex in rats.Psychol. Rep. 12, 351–358.Google Scholar
  50. Kelso S. R., Ganong A. H., and Brown T. H. (1986) Hebbian synapses in hippocampus.Proc. Natl. Acad. Sci. USA 83, 5326–5330.PubMedGoogle Scholar
  51. Kim M., Campeau S., Falls W. A., and Davis M. (1993) Infusion of the non-NMDA receptor antagonist CNQX into the amygdala blocks the expression of fear-potentiated startle.Behav. Neural Biol. 59, 5–8.PubMedGoogle Scholar
  52. Kim M. and McGaugh J. L. (1992) Effects of intraamygdala injections of NMDA receptor antagonists on acquisition and retention of inhibitory avoidance.Brain Res. 585, 35–48.PubMedGoogle Scholar
  53. Krettek J. E. and Price J. L. (1974) A direct input from the amygdala to the thalamus and cerebral cortex.Brain Res. 67, 169–174.PubMedGoogle Scholar
  54. Krettek J. E. and Price J. L. (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in rat and cat.J. Comp. Neurol. 172, 687–722.PubMedGoogle Scholar
  55. Krettek J. E. and Price J. L. (1978a) Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat.J. Comp. Neurol. 178, 225–254.PubMedGoogle Scholar
  56. Krettek J. E. and Price J. L. (1978b) A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections.J. Comp. Neurol. 178, 255–279.PubMedGoogle Scholar
  57. Le Gal La Salle G. and Ben-Ari Y. (1981) Unit activity in the amygdaloid complex: a review, inThe Amygdaloid Complex (Ben-Ari Y., ed.), Elsevier/ North Holland, Amsterdam, pp. 227–237.Google Scholar
  58. LeDoux J. E. (1995) Emotion: clues from the brain.Ann. Rev. Psych. 46, 209–235.Google Scholar
  59. LeDoux J. E., Cicchetti P., Xagoraris A., and Romanski L. M. (1990a) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning.J. Neurosci. 10, 1062–1069.PubMedGoogle Scholar
  60. LeDoux, J. E., Farb C., and Ruggiero D. A. (1990b) Topographic organization of neurons in the acoustic thalamus that project to the amygdala.J. Neurosci. 10, 1043–1054.PubMedGoogle Scholar
  61. LeDoux J. E. and Farb C. R. (1991) Neurons of the acoustic thalamus that project to the amygdala contain glutamate.Neurosci. Lett. 134, 145–149.PubMedGoogle Scholar
  62. LeDoux J. E., Farb C. R., and Romanski L. M. (1991) Overlapping projections to the amygdala and striatum from auditory processing ares of the thalamus and cortex.Neurosci. Lett. 134, 139–144.PubMedGoogle Scholar
  63. LeDoux J. E., Iwata J., Cicchetti P., and Reis D. J. (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear.J. Neurosci. 8, 2517–2529.PubMedGoogle Scholar
  64. Li X. F., Phillips R., and LeDoux J. E. (1995) NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala.Exp. Brain. Res. 105, 87–100.PubMedGoogle Scholar
  65. Liang K. C., Hon W., and Davis M. (1994) Pre- and posttraining infusion ofN-methyl-d-aspartate receptor antagonists into the amygdala impair memory in an inhibitory avoidance task.Behav. Neurosci. 108, 241–253.PubMedGoogle Scholar
  66. Liao D., Hessler N. A., and Malinow R. (1995) Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal sliceNature (Lond.) 375, 400–404.Google Scholar
  67. Maren S., Aharonov G., and Fanselow M. S. (1996) Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala in rats: absence of a temporal gradient.Behav. Neurosci., in press.Google Scholar
  68. Maren S., Aharonov G., Stote D. L., and Fanselow M. S. (1997) N-methyl-d-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats.Behav. Neurosci., in press.Google Scholar
  69. Maren S. and Baudry M. (1995) Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory.Neurobiol. Learn. Mem. 63, 1–18.PubMedGoogle Scholar
  70. Maren S. and Fanselow M. S. (1995) Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulationin vivo.J. Neurosci. 15, 7548–7564.PubMedGoogle Scholar
  71. Maren S. and Fanselow M. S. (1996) The amygdala and fear conditioning: Has the nut been cracked?Neuron 16, 237–240.PubMedGoogle Scholar
  72. Maren S., Poremba A., and Gabriel M. (1991) Basolateral amygdaloid multi-unit neuronal cor-relates of discriminative avoidance learning in rabbits.Brain Res. 549, 311–316.PubMedGoogle Scholar
  73. Maren S., Tocco G., Standley S., Baudry M., and Thompson R. F. (1993) Postsynaptic factors in the expression of long-term potentiation (LTP): increased glutamate receptor binding following LTP inductionin vivo.Proc. Natl. Acad. Sci. USA 90, 9554–9658.Google Scholar
  74. McDonald A. J. (1984) Neuronal organization of the lateral and basolateral amygdaloid nuclei in the rat.J. Comp. Neurol. 222, 589–606.PubMedGoogle Scholar
  75. McDonald A. J. (1985a) Immunohistochemical identification of GABA-containing neurons in the rat basolateral amygdala.Neurosci. Lett. 53, 203–207.PubMedGoogle Scholar
  76. McDonald A. J. (1985b) Morphology of peptide-containing neurons in the rat basolateral amygdaloid nucleus.Brain Res. 338, 186–191.PubMedGoogle Scholar
  77. McDonald A. J. (1989) Coexistence of somatostatin with neuropeptide Y, but not with cholecystokinin or vasoactive intestinal peptide, in neurons of the rat amygdala.Brain Res. 500 37–45.PubMedGoogle Scholar
  78. McDonald A. J. (1994) Neuronal localization of glutamate receptor subunits in the basolateral amygdala.Neuroreport 6, 13–16.PubMedGoogle Scholar
  79. McDonald A. J. and Pearson J. C. (1989) Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala.Neurosci. Lett. 100, 53–58.PubMedGoogle Scholar
  80. McGaugh J. L. (1989) Involvement of hormonal and neuromodulatory systems in the regulation of memory storage.Ann. Rev. Neurosci. 12, 255–287.PubMedGoogle Scholar
  81. Mello L. E., Tan A. M., and Finch D. M. (1992a) Convergence of projections from the rat hippocampal formation, medial geniculate and basal forebrain onto single amygdaloid neurons: anin vivo extra- and intracellular electrophysiological study.Brain Res. 587, 24–40.PubMedGoogle Scholar
  82. Mello L. E., Tan A. M., and Finch D. M. (1992b) GABAergic synaptic transmission in projections from the basal forebrain and hippocampal formation to the amygdala: anin vivo iontophoretic study.Brain Res. 587, 41–48.PubMedGoogle Scholar
  83. Miserendino M. J., Sananes C. B., Melia K. R., and Davis M. (1990) Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala.Nature (Lond.) 345, 716–718.Google Scholar
  84. Morrison F. and Poletti C. E. (1980) Hippocampal influences on amygdala unit activity in awake squirrel monkeys.Brain Res. 192, 353–369.PubMedGoogle Scholar
  85. Muramoto K., Ono T., Nishijo H., and Fukuda M. (1993) Rat amygdaloid neuron responses during auditory discrimination.Neuroscience 52, 621–636.PubMedGoogle Scholar
  86. Nicoll R. A. and Malenka R. C. (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus.Nature (Lond.) 377, 115–118.Google Scholar
  87. Norgren R. (1976) Taste pathways to hypothalamus and amygdala.J. Comp. Neurol. 166, 17–30.PubMedGoogle Scholar
  88. Nose I., Higashi H., Inokuchi H., and Nishi S. (1991) Synaptic responses of guinea pig and rat central amygdala neuronsin vitro.J. Neurophysiol. 65, 1227–1241.PubMedGoogle Scholar
  89. Ono T., Nishijo H., and Uwano T. (1995) Amygdala role in conditioned associative learning.Prog. Neurobiol. 46, 401–422.PubMedGoogle Scholar
  90. Ottersen O. P. (1980) Afferent connections of the amygdaloid complex of the rat and cat: II. afferents from the hypothalamus and the basal telencephalon.J. Comp. Neurol. 194, 267–298.PubMedGoogle Scholar
  91. Ottersen O. P. (1981) Afferent connections of the amygdaloid complex of the rat with some observations in the cat: III. afferents from the lower brain stem.J. Comp. Neurol. 202, 335–356.PubMedGoogle Scholar
  92. Ottersen O. P. (1982) Connections of the amygdala of the rat. IV: corticoamygdaloid and intra-amygdaloid connections as studied with axonal transport of horseradish peroxidase.J. Comp. Neurol. 205, 30–48.PubMedGoogle Scholar
  93. Ottersen P. P. and Ben-Ari Y. (1979) Afferent connections to the amygdaloid complex of the rat and cat.J. Comp. Neurol. 187, 401–424.PubMedGoogle Scholar
  94. Pare D., Smith Y., and Pare J.-F. (1995) Intra-amygdaloid projections of the basolateral and basomedial nuclei in the cat:Phaseolus vulgaris-leucoagglutinin anterograde tracing at the light and electron microscopic level.Neurosci. 69, 567–583.Google Scholar
  95. Pascoe J. P. and Kapp B. S. (1985) Electrophysiological characteristics of amygdaloid central nucleus neurons during Pavlovian fear conditioning in the rabbit.Behav. Brain Res. 16, 117–133.PubMedGoogle Scholar
  96. Prelevic S., Burnham W. M., and Gloor P. (1976) A microelectrode study of amygdaloid afferents: temporal neocortex inputs.Brain Res. 105, 437–457.PubMedGoogle Scholar
  97. Quirk G. J., Repa J. C., and LeDoux J. E. (1995) Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat.Neuron 15, 1029–1039.PubMedGoogle Scholar
  98. Racine R. J. and Milgram N. W. (1983) Short-term potentiation phenomena in the rat limbic forebrain.Brain Res. 260, 201–216.PubMedGoogle Scholar
  99. Racine R. J., Milgram N. W., and Hafner S. (1983) Long-term potentiation phenomena in the rat limbic forebrain.Brain Res. 260, 217–31.PubMedGoogle Scholar
  100. Rainnie D. G., Asprodini E. K., and Shinnick-Gallagher P. (1991a) Excitatory transmission in the basolateral amygdala.J. Neurophysiol. 66, 986–998.PubMedGoogle Scholar
  101. Rainnie D. G., Asprodini E. K., and Shinnick-Gallagher P. (1991b) Inhibitory transmission in the basolateral amygdala.J. Neurophysiol. 66, 999–1009.PubMedGoogle Scholar
  102. Rainnie D. G., Asprodini E. K., and Shinnick-Gallagher P. (1993) Intracellular recordings from morphologically identified neurons of the basolateral amygdala.J. Neurophysiol. 69, 1350–1362.PubMedGoogle Scholar
  103. Rainnie D. G., Fernhout B. J. H., and Shinnick-Gallagher P. (1992) Differential actions of corticotropin releasing factor on basolateral and central amygdaloid neurones,in vitro.J. Pharmacol. Exp. Ther. 263, 846–858.PubMedGoogle Scholar
  104. Rainnie D. G., Holmes K. H., and Shinnick-Gallagher P. (1994) Activation of postsynaptic metabotropic glutamate receptors bytrans-ACPD hyperpolarizes neurons of the basolateral amygdala.J. Neurosci. 14, 7208–7220.PubMedGoogle Scholar
  105. Rainnie D. G. and Shinnick-Gallagher P. (1992)trans-ACPD andl-APB presynaptically inhibit excitatory glutamatergic transmission in the basolateral amygdala (BLA)Neurosci. Lett. 139, 87–91.PubMedGoogle Scholar
  106. Rizvi T. A., Ennis M., Behbehani M. M., and Shipley M. T. (1991) Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity.J. Comp. Neurol. 303, 121–131.PubMedGoogle Scholar
  107. Rogan M. T. and LeDoux J. E. (1995) LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit.Neuron 15, 127–136.PubMedGoogle Scholar
  108. Romanski L. M., Clugnet M. C., Bordi, F., and LeDoux J. E. (1993) Somatosensory and auditory convergence in the lateral nucleus of the amygdala.Behav. Neurosci. 107, 444–450.PubMedGoogle Scholar
  109. Sananes C. B. and Davis M. (1992)N-methyl-d-aspartate lesions of the lateral and basolateral nuclei of the amygdala block fear-potentiated startle and shock sensitization of startle.Behav. Neurosci. 106, 72–80.PubMedGoogle Scholar
  110. Sanghera M. K., Rolls E. T., and Roper-Hall A. (1979) Visual responses of neurons in the dorsolateral amygdala of the alert monkey.Exp. Neurol. 63, 610–626.PubMedGoogle Scholar
  111. Sarter M. and Markowitsch H. J. (1985) Involvement of the amygdala in learning and memory: a critical review, with emphasis on anatomical relations.Behav. Neurosci. 99, 342–380.PubMedGoogle Scholar
  112. Schiess M. C., Asprodini E. K., Rainnie D. G., and Shinnick-Gallagher P. (1993) The central nucleus of the rat amygdala:in vitro intracellular recordings.Brain Res. 604, 283–297.PubMedGoogle Scholar
  113. Shindou T., Watanabe S., Yamamoto, K., and Nakanishi H. (1993) NMDA receptor-dependent formation of long-term potentiation in the rat medial amygdala neuron in anin vitro slice preparation.Brain Res. Bull. 31, 667–672.PubMedGoogle Scholar
  114. Smith Y. and Pare D. (1994) Intra-amygdaloid projections of the lateral nucleus in the cat: PHA-L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry.J. Comp. Neurol. 342, 232–248.PubMedGoogle Scholar
  115. Sripanidkulchai K., Sripanidkulchai B., and Wyss J. M. (1984) The cortical projection of the basolateral amygdaloid nucleus in the rat: a retrograde fluorescent dye study.J. Comp. Neurol. 229, 419–431.PubMedGoogle Scholar
  116. Stefanacci L., Farb C. R., Pitkanen A., Go G., LeDoux J. E., and Amaral D. G. (1992) Projections from the lateral nucleus to the basal nucleus of the amygdala: a light and electron microscopic PHA-L study in the rat.J. Comp. Neurol. 323, 586–601.PubMedGoogle Scholar
  117. Stringer J. L., Greenfield L. J., Hackett J. T., and Guyenet P. G. (1983) Blockade of long-term potentiation by phencyclidine and sigma opiates in the hippocampus in vivo and in vitro.Brain Res. 280, 127–138.PubMedGoogle Scholar
  118. Sugita S. and North R. A. (1993) Opioid actions on neurons of rat lateral amygdalain vitro.Brain Res. 612, 151–155.PubMedGoogle Scholar
  119. Sugita S., Shen K.-Z., and North R. A. (1992) 5-Hydroxytryptamine is a fast excitatory transmitter at 5-HT3 receptors in rat amygdala.Neuron 8, 199–203.PubMedGoogle Scholar
  120. Sugita S., Tanaka E., and North R. A. (1993) Membrane properties and synaptic potentials of three types of neurone in rat lateral amygdala.J. Physiol. (Lond.) 460, 705–718.Google Scholar
  121. Sun N. and Cassell M. D. (1993) Intrinsic GABAergic neurons in the rat central extended amygdala.J. Comp. Neurol. 330, 381–404.PubMedGoogle Scholar
  122. Sun N., Yi, H., and Cassell M. D. (1994) Evidence for a GABAergic interface between cortical afferents and brainstem projection neurons in the rat central extended amygdala.J. Comp. Neurol. 340, 43–64.PubMedGoogle Scholar
  123. Turner B. H. and Herkenham M. (1991) Thalamoamygdaloid projections in the rat: a test of the amygdala’s role in sensory processing.J. Comp. Neurol. 313, 295–325.PubMedGoogle Scholar
  124. Uwano T., Nishijo H., Ono T., and Tamure R. (1995) Neuronal responsiveness to various sensory stimuli, and associative learning in the rat amygdala.Neuroscience 68, 339–361.PubMedGoogle Scholar
  125. Van Groen T. and Wyss J. M. (1990) Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections.J. Comp. Neurol. 302, 515–528.PubMedGoogle Scholar
  126. Veenig J. G. (1978a) Cortical afferents of the amygdaloid complex in the rat: an HRP study.Neurosci. Lett. 8, 191–195.Google Scholar
  127. Veenig J. G. (1978b) Subcortical afferents of the amygdaloid complex in the rat: an HRP study.Neurosci. Lett. 8, 197–202.Google Scholar
  128. Wang S.-J., Huang C.-C., and Gean P.-W. (1995) Tetrahydro-9-aminoacridine presynaptically inhibits glutamatergic transmission in the rat amygdala.Brain Res. Bull. 37, 325–327.PubMedGoogle Scholar
  129. Washburn M. S. and Moises H. C. (1992a) Electrophysiological and morphological properties of rat basolateral amygdaloid neuronsin vitro.J. Neurosci. 12, 4066–4079.PubMedGoogle Scholar
  130. Washburn M. S. and Moises H. C. (1992b) Inhibitory responses of rat basolateral amygdaloid neurons recordedin vitro.Neuroscience 50, 811–830.PubMedGoogle Scholar
  131. Watanabe Y., Ikegaya Y., Saito H., and Abe K. (1995a) Roles of GABAA, NMDA and muscarinic receptors in the induction of long-term potentiation in the medial and lateral amygdalain vitro.Neurosci. Res. 21, 317–322.PubMedGoogle Scholar
  132. Watanabe Y., Saito H., and Abe K. (1995b) Nitric oxide is involved in long-term potentiation in the medial but not lateral amygdala neuron synapsesin vitro.Brain Res. 688, 233–236.PubMedGoogle Scholar
  133. Wigstrom H. and Gustafsson B. (1986) Postsynaptic control of hippocampal long-term potentiation.J. Physiol. (Lond.) 81, 228–236.Google Scholar
  134. Womble M. D. and Moises H. C. (1992). Muscarinic inhibition of M-current and a potassium leak conductance in neurones of the rat basolateral amygdala.J. Physiol. 457, 93–114.PubMedGoogle Scholar
  135. Womble M. D. and Moises H. C. (1993a) Hyperpolarization-activated currents in neurons of the rat basolateral amygdala.J. Neurophysiol. 70, 2056–2065.PubMedGoogle Scholar
  136. Womble M. D. and Moises H. C. (1993b) Muscarinic modulation of conductances underlying the afterhyperpolarization in neurons of the rat basolateral amygdala.Brain Res. 621, 87–96.PubMedGoogle Scholar
  137. Wyss J. M. (1981) An autoradiographic study of the efferent connections of the entorhinal cortex in the rat.J. Comp. Neurol. 199, 495–512.PubMedGoogle Scholar
  138. Yu B. and Shinnick-Gallagher P. (1994) Interleukin-1β inhibits synaptic transmission and induces membrane hyperpolarization in amygdala neurons.J. Pharmacol. Exp. Ther. 271, 590–600.PubMedGoogle Scholar
  139. Zalutsky R. A. and Nicoll R. A. (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons.Science 248, 1619–1624.PubMedGoogle Scholar
  140. Zucker R. S. (1989) Short-term synaptic plasticity.Ann. Rev. Neurosci. 12, 13–31.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Stephen Maren
    • 1
  1. 1.Department of PsychologyUniversity of MichiganAnn Arbor

Personalised recommendations