Advertisement

Molecular Neurobiology

, 12:1 | Cite as

Ionotropic glutamate receptors

Their possible role in the expression of hippocampal synaptic plasticity
  • Fredrik Asztély
  • Bengt Gustafsson
Article

Abstract

In the brain, most fast excitatory synaptic transmission is mediated through L-glutamate acting on postsynaptic ionotropic glutamate receptors. These receptors are of two kinds—the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate (non-NMDA) and theN-methyl-D-aspartate (NMDA) receptors, which are thought to be colocalized onto the same postsynaptic elements. This excitatory transmission can be modulated both upward and downward, long-term potentiation (LTP) and long-term depression (LTD), respectively. Whether the expression of LTP/LTD is pre-or postsynaptically located (or both) remains an enigma. This article will focus on what postsynaptic modifications of the ionotropic glutamate receptors may possibly underly long-term potentiation/depression. It will discuss the character of LTP/LTD with respect to the temporal characteristics and to the type of changes that appears in the non-NMDA and NMDA receptor-mediated synaptic currents, and what constraints these findings put on the possible expression mechanism(s) for LTP/LTD. It will be submitted that if a modification of the glutamate receptors does underly LTP/LTD, an increase/decrease in the number of functional receptors is the most plausible alternative. This change in receptor number will have to include a coordinated change of both the non-NMDA and the NMDA receptors.

Index Entries

Glutamate receptor channels NMDA non-NMDA synaptic plasticity long-term potentiation long-term depression hippocampus 

References

  1. 1.
    Mayer M. L. and Westbrook G. L. (1987) The physiology of excitatory amino acids in the vertebrate central nervous system.Prog. Neurobiol. 28, 197–276.PubMedCrossRefGoogle Scholar
  2. 2.
    Li Y., Erzurumlu R. S., Chen C., Jhaveri S., and Tonegawa S. (1994) Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR 1 knockout mice.Cell 76, 427–437.PubMedCrossRefGoogle Scholar
  3. 3.
    Cramer K. S. and Sur M. (1995) Activity-dependent remodeling of connections in the mammalian visual system.Curr. Opin. Neurobiol. 5, 106–111.PubMedCrossRefGoogle Scholar
  4. 4.
    Bliss T. V. P. and Collingridge G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus.Nature 361, 31–39.PubMedCrossRefGoogle Scholar
  5. 5.
    Zieglgänsberger W. and Tölle T. R. (1993) The pharmacology of pain signalling.Curr. Opin. Neurobiol. 3, 611–618.PubMedCrossRefGoogle Scholar
  6. 6.
    Davis M., Rainnie D., and Cassell M. (1994) Neurotransmission in rat amygdala related to fear and anxiety.Trends Neurosci. 17, 208–214.PubMedCrossRefGoogle Scholar
  7. 7.
    Choi D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system.Neuron 1, 623–634.PubMedCrossRefGoogle Scholar
  8. 8.
    Szatkowski M. and Attwell D. (1994) Triggering and execution of neuronal death in brain ischemia: two phases of glutamate release by different mechanisms.Trends Neurosci. 9, 359–365.CrossRefGoogle Scholar
  9. 9.
    Schoepp D. D. and Conn P. J. (1993) Metabotropic glutamate receptors in brain function and pathology.Trends Pharmacol. Sci. 14, 13–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Gasic G. P. and Hollmann M. (1992) Molecular neurobiology of glutamate receptors.Ann. Rev. Physiol. 54, 507–536.CrossRefGoogle Scholar
  11. 11.
    Wisden W. and Seeburg P. H. (1993) Mammalian ionotropic glutamate receptors.Curr. Opin. Neurobiol. 3, 291–298.PubMedCrossRefGoogle Scholar
  12. 12.
    Hollmann M. and Heinemann S. (1994) Cloned glutamate receptors.Ann. Rev. Neurosci. 17, 31–108.PubMedCrossRefGoogle Scholar
  13. 13.
    Wigström H. and Gustafsson B. (1985) On long-lasting potentiation in the hippocampus: a proposed mechanism for its dependence on coincident pre- and postsynaptic activity.Acta Physiol. Scan. 123, 519–522.CrossRefGoogle Scholar
  14. 14.
    Bekkers J. M. and Stevens C. F. (1989) NMDA and non-NMDA receptors are colocalized at individual excitatory synapses in cultured rat hippocampus.Nature 341, 230–233.PubMedCrossRefGoogle Scholar
  15. 15.
    McBain C. and Dingledine R. (1992) Dualcomponent miniature excitatory synaptic currents in rat hippocampal CA3 neurons.J. Neurophysiol. 68, 16–27.PubMedGoogle Scholar
  16. 16.
    Hablitz J. J. and Langmoen I. A. (1986) N-methyl-D-aspartate receptor antagonists reduce synaptic excitation in the hippocampus.J. Neurosci. 6, 102–106.PubMedGoogle Scholar
  17. 17.
    Collingridge G. L., Herron C. E., and Lester R. A. J. (1988) Synaptic activation of N-methyl-D-aspartate receptors in the Schaffer collateral-commissural pathway of the rat hippocampus.J. Physiol. (Lond.) 399, 283–300.Google Scholar
  18. 18.
    Mayer M. L., Westbrook G. L., and Guthrie P. B. (1984) Voltage-dependent block by Mg of NMDA responses in spinal cord neurons.Nature 305, 719–721.Google Scholar
  19. 19.
    Nowak L., Bregestovski P., Ascher P., Herbert A., and Prochiantz A. (1984) Magnesium gates glutamate-activated channels in mouse central neurons.Nature 307, 462–465.PubMedCrossRefGoogle Scholar
  20. 20.
    Tsumoto T. (1992) Long-term potentiation and long-term depression in the neocortex.Prog. Neurobiol. 39, 209–228.PubMedCrossRefGoogle Scholar
  21. 21.
    Dudek S. M. and Bear M. F. (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus.J. Neurosci. 13, 2910–2918.PubMedGoogle Scholar
  22. 22.
    Tsumoto T. (1993) Long-term depression in cerebral cortex: a possible substrate of “forgetting” that should not be forgotten.Neurosci. Res. 16, 263–270.PubMedCrossRefGoogle Scholar
  23. 23.
    Linden D. J. (1994) Long-term synaptic depression in the mammalian brain.Neuron 12, 457–472.PubMedCrossRefGoogle Scholar
  24. 24.
    Gustafsson B. and Wigström H. (1988) Physiological mechanisms underlying long-term potentiation.Trends neurosci. 11, 156–162.PubMedCrossRefGoogle Scholar
  25. 25.
    Malenka R. C., Kauer J. A., Perkel D. J., and Nicoll R. A. (1989) The impact of postsynaptic calcium on synaptic transmission—its role in long-term potentiation.Trends Neurosci. 12, 444–450.PubMedCrossRefGoogle Scholar
  26. 26.
    Bear M. F. and Malenka R. C. (1994) Synaptic plasticity: LTP and LTD.Curr. Opin. Neurobiol. 4, 389–399.PubMedCrossRefGoogle Scholar
  27. 27.
    Kauer J. A., Malenka R. C., and Nicoll R. A. (1988) A persistent postsynaptic modification mediates long-term potentiation in hippocampus.Neuron 1, 911–917.PubMedCrossRefGoogle Scholar
  28. 28.
    Muller D., Joly M., and Lynch G. (1988) Contributions of quisqalate and NMDA receptors to the induction and expression of LTP.Science 242, 1694–1697.PubMedCrossRefGoogle Scholar
  29. 29.
    Lin J.-H., Way L.-L., and Gean P.-W. (1993) Pairing of pre- and postsynaptic activities in hippocampal CA1 neurons induces long-term modifications of NMDA receptor-mediated synaptic potential.Brain Res. 603, 117–120.PubMedCrossRefGoogle Scholar
  30. 30.
    Dolphin A. C., Errington M. L., and Bliss T. V. P. (1982) Long-term potentiation in the perforant path in vivo is associated with increased glutamate release.Nature 297, 496–498.PubMedCrossRefGoogle Scholar
  31. 31.
    Bekkers J. M. and Stevens C. F. (1990) Presynaptic mechanism for long-term potentiation in the hippocampus.Nature 346, 724–729.PubMedCrossRefGoogle Scholar
  32. 32.
    Malinow R. and Tsien R. W. (1990) Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices.Nature 346, 177–180.PubMedCrossRefGoogle Scholar
  33. 33.
    Malgaroli A. and Tsien R. W. (1992) Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons.Nature 357, 134–139.PubMedCrossRefGoogle Scholar
  34. 34.
    Stevens C. F. and Wang Y. (1994) Changes in reliability of synaptic function as a mechanism for plasticity.Nature 371, 704–707.PubMedCrossRefGoogle Scholar
  35. 35.
    Foster T. C. and McNaughton B. (1991) Long-term enhancement of CA1 synaptic transmission is due to increased quantal size, not quantal content.Hippocampus 1, 79–91.PubMedCrossRefGoogle Scholar
  36. 36.
    Davies S. N., Lester R. A. J., Reymann K. G., and Collingridge G. L. (1989) Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation.Nature 338, 500–503.PubMedCrossRefGoogle Scholar
  37. 37.
    Manabe T. and Nicoll R. A. (1994) Long-term potentiation: evidence against an increase in transmitter release probability in the CA1 region of the hippocampus.Science 265, 1888–1892.PubMedCrossRefGoogle Scholar
  38. 38.
    Perkel D. J. and Nicoll R. A. (1993) Evidence for an all-or-none regulation of transmitter release: implications for long-term potentiation.J. Physiol. (Lond.) 471, 481–500.Google Scholar
  39. 39.
    Manabe T., Renner P., and Nicoll R. A. (1992) Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents.Nature 355, 50–55.PubMedCrossRefGoogle Scholar
  40. 40.
    Kullmann D. M. (1994) Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation.Neuron 12, 1111–1120.PubMedCrossRefGoogle Scholar
  41. 41.
    Larkman A., Hannay T., Stratford K., and Jack J. (1992) Presynaptic release probability influences the locus of long-term potentiation.Nature 360, 70–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Liao D., Jones A., and Malinow R. (1992) Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus.Neuron 9, 1089–1097.PubMedCrossRefGoogle Scholar
  43. 43.
    Asztély F., Hanse E., Wigström H., and Gustafsson B. (1991) Synaptic potentiation in the hippocampal CA1 region induced by application of N-methyl-D-aspartate.Brain Res. 558, 153–156.PubMedCrossRefGoogle Scholar
  44. 44.
    Hanse E. and Gustafsson B. (1994) TEA elicits two distinct potentiations of synaptic transmission in the CA1 region of the hippocampal slice.J. Neurosci. 14, 5028–5034.PubMedGoogle Scholar
  45. 45.
    Huber K. M., Mauk M. D., and Kelly P. T. (1995) Distinct LTP induction mechanisms: contribution of NMDA receptors and voltage-dependent calcium channels.J. Neurophysiol. 73, 270–279.PubMedGoogle Scholar
  46. 46.
    Zucker R. S. (1989) Short-term plasticity.Ann. Rev. Neurosci. 12, 13–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Teyler T. J., Goddard G. V., Lynch G., and Andersen P. (1982) Properties and mechanisms of LTP, inHippocampal Long-Term Potentiation: Mechanisms and Implications for Memory (Swanson L. W. Teyler T. J., and Thompson R. F., eds.), MIT Press, Cambridge, MA, pp. 644–680.Google Scholar
  48. 48.
    Lynch G., Kessler M., Arai A., and Larson J. (1990) The nature and cause of long-term potentiation.Prog. Brain. Res. 83, 233–250.PubMedCrossRefGoogle Scholar
  49. 49.
    Gustafsson B., Asztély F., Hanse E., and Wigström H. (1989) Onset characteristics of long-term potentiation in the guinea pig hippocampal CA1 region in vitro.Eur. J. Neurosci. 1, 382–394.PubMedCrossRefGoogle Scholar
  50. 50.
    Hanse E. and Gustafsson B. (1992) Postsynaptic, but not presynaptic, activity controls the early time course of long-term potentiation in the dentate gyrus.J. Neurosci. 12, 3226–3240.PubMedGoogle Scholar
  51. 51.
    Asztély F., Xiao M.-Y., Wigström H., and Gustafsson B. (1994) Effect of adenosine-induced changes in presynaptic release probability on long-term potentiation in the hippocampal CA1 region.J. Neurosci. 14, 6707–6714.PubMedGoogle Scholar
  52. 52.
    Malenka R. C. (1991) Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus.Neuron 6, 53–60.PubMedCrossRefGoogle Scholar
  53. 53.
    Hanse E. and Gustafsson B. (1994) Onset and stabilization of NMDA receptor-dependent hippocampal long-term potentiation.Neurosci. Res. 20, 15–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Kennedy M. B. (1988) Synaptic memory molecules.Nature 335, 770–772.PubMedCrossRefGoogle Scholar
  55. 55.
    Reymann K. G., Davies S. N., Matthies H., Kase H., and Collingridge G. L. (1990) Activation of a K-252b-sensitive protein kinase is necessary for a postsynaptic phase of long-term potentiation in area CA1 of rat hippocampus.Eur. J. Neurosci. 2, 481–486.PubMedCrossRefGoogle Scholar
  56. 56.
    Malenka R., Lancaster B., and Zucker R. (1992) Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation.Neuron 9, 121–128.PubMedCrossRefGoogle Scholar
  57. 57.
    Steward O. (1993) Synapse growth as a mechanism for activity-dependent synaptic modification, inMemory Concepts—1993. Basic and Clinical Aspects (Andersen P., Hvalby Ø., Paulsen O., and Hökfelt B., eds.), Elsevier, Amsterdam, pp. 281–301.Google Scholar
  58. 58.
    Sommer B., Keinänen K., Verdoorn T. A., Eisden W., Burnashev N., Herb A., Köhler M., Tagaki T., Sakmann B., and Seeburg P. H. (1990) Flip and flop. A cell-specific functional switch in glutamate-operated channels of the CNS.Science 249, 1580–1585.PubMedCrossRefGoogle Scholar
  59. 59.
    Abraham W. C., Gustafsson B., and Wigström H. (1987) Long-term potentiation involves enhanced synaptic excitation relative to synaptic inhibition in guinea-pig hippocampus.J. Physiol. (Lond.) 394, 367–380.Google Scholar
  60. 60.
    Hess G. and Gustafsson B. (1990) Changes in field excitatory postsynaptic potential shape induced by tetanization in the CA1 region of the guinea-pig hippocampal slice.Neurosci. 37, 61–69.CrossRefGoogle Scholar
  61. 61.
    Isaacson J. S. and Nicoll R. A. (1991) Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus.Proc. Natl. Acad. Sci. USA 88, 10,936–10,940.CrossRefGoogle Scholar
  62. 62.
    Ambros-Ingerson J., Larson J., Xiao P., and Lynch G. (1991) LTP changes the waveform of synaptic responses.Synapse 9, 314–316.PubMedCrossRefGoogle Scholar
  63. 63.
    Asztély F. and Gustafsson B. (1994) Dissociation between long-term potentiation and associated changes in field EPSP waveform in the hippocampal CA1 region: an in vitro study using guinea pig brain slices.Hippocampus 4, 148–156.PubMedCrossRefGoogle Scholar
  64. 64.
    Aniksztejn L. and Ben-Ari Y. (1991) Novel form of long-term potentiation produced by a K channel blocker in the hippocampus.Nature 349, 67–69.PubMedCrossRefGoogle Scholar
  65. 65.
    Kullmann D. M., Perkel D. J., Manabe T., and Nicoll R. A. (1992) Ca entry via postsynaptic voltage-sensitive Ca channels can transiently potentiate excitatory synaptic transmission in the hippocampus.Neuron 9, 1175–1183.PubMedCrossRefGoogle Scholar
  66. 66.
    Huang Y.-Y. and Malenka R. C. (1993) Examination of TEA-induced synaptic enhancement in area CA1 of the hippocampus: the role of voltage-dependent Ca channels in the induction of LTP.J. Neurosci. 13, 568–576.PubMedGoogle Scholar
  67. 67.
    Xiao Y.-Y., Karpefors M., Gustafsson B., and Wigström H. (1995) On the linkage between AMPA and NMDA receptor-mediated EPSPs in homosynaptic long-term depression in the hippocampal region of young rats.J. Neurosci. 15, 4496–4500.PubMedGoogle Scholar
  68. 68.
    Muller D. and Lynch G. (1988) Long-term potentiation differentially affects two components of synaptic responses in hippocampus.Proc. Natl. Acad. Sci. USA 85, 9346–9350.PubMedCrossRefGoogle Scholar
  69. 69.
    Asztély F., Wigström H., and Gustafsson B. (1992) The relative contribution of NMDA receptor channenls in the expression of long-term potentiation in the CA1 region of the hippocampus.Eur. J. Neurosci. 4, 342–345.CrossRefGoogle Scholar
  70. 70.
    Garaschuk O. and Kovalchuk Y. (1992) Adenoside-dependent enhancement by methylxantines of excitatory synaptic transmission in hippocampus of rats.Neurosci. Lett. 135, 10–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Bashir Z. I., Alford S., Davies S. N., Randall A. D., and Collingridge G. L. (1991) Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus.Nature 349, 156–158.PubMedCrossRefGoogle Scholar
  72. 72.
    Xie X., Berger T. W., and Barrionuevo G. (1992) Isolated NMDA receptor-mediated synaptic responses express both LTP and LTD.J. Neurophysiol. 67, 1009–1013.PubMedGoogle Scholar
  73. 73.
    Clark K. A. and Collingridge G. L. (1995) Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus.J. Physiol. (Lond.) 482, 39–52.Google Scholar
  74. 74.
    Xiao Y.-Y., Wigström, H., and Gustafsson B. (1994) Long-term depression in the hippocampal CA1 region is associated with equal changes in AMPA and NMDA receptor-mediated synaptic potentials.Eur. J. Neurosci. 6, 1055–1057.PubMedCrossRefGoogle Scholar
  75. 75.
    Kombian S. B. and Malenka R. C. (1994) Simultaneous LTP of non-NMDA-and LTD of NMDA-receptor-mediated responses in the nucleus accumbens.Nature 368, 242–246.PubMedCrossRefGoogle Scholar
  76. 76.
    Crépel V., Hammond C., Chinestra P., Diabira D., and Ben-Ari Y. (1993) A selective LTP of NMDA receptor-mediated currents induced by anoxia in CA1 hippocampal neurons.J. Neurophysiol. 70, 2045–2055.PubMedGoogle Scholar
  77. 77.
    Hammond C., Crépel H., Gozlan H., and Ben-Ari Y. (1994) Anoxic LTP sheds light on the multiple facets of NMDA receptors.Trends Neurosci. 17, 497–503.PubMedCrossRefGoogle Scholar
  78. 78.
    Gozlan H., Diabira D., Chinestra P., and Ben-Ari Y. (1994) Anoxic LTP is mediated by the redox modulatory site of the NMDA receptor.J. Neurophysiol. 72, 3017–3022.PubMedGoogle Scholar
  79. 79.
    Scatton B. (1993) The NMDA receptor complex.Fund. Clin. Pharmacol. 7, 389–400.CrossRefGoogle Scholar
  80. 80.
    Swope S. L., Moss S. J., Blackstone C. D., and Huganir R. L. (1992) Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity.FASEB J. 6, 2514–2523.PubMedGoogle Scholar
  81. 81.
    Raymond L. A., Blackstone C. D., and Huganir R. L. (1993) Phosphorylation of amino acid neurotransmitter receptors in synaptic plasticity.Trends Neurosci. 16, 147–153.PubMedCrossRefGoogle Scholar
  82. 82.
    Malinow R., Madison D. V., and Tsien R. W. (1988) Persistent protein kinase activity underlying long-term potentiation.Nature 335, 820–824.PubMedCrossRefGoogle Scholar
  83. 83.
    Wang J.-H. and Feng D.-P. (1992) Postsynaptic protein kinase C essential to induction and maintenance of long-term potentiation.Proc. Natl. Acad. Sci. USA 439, 2576–2580.CrossRefGoogle Scholar
  84. 84.
    Mulkey R. M., Herron C. E., and Malenka R. C. (1993) An essential role for protein phosphatases in hippocampal long-term depression.Science 261, 1051–1055.PubMedCrossRefGoogle Scholar
  85. 85.
    Muller D., Buchs P. A., Dunant Y., and Lynch G. (1990) Protein kinase C activity is not responsible for the expression of long-term potentiation in hippocampus.Proc. Natl. Acad. Sci. USA 87, 4073–4077.PubMedCrossRefGoogle Scholar
  86. 86.
    Perkel D. J. and Nicoll R. A. (1991) The role of protein kinase activity in long-term potentiation, inLong-Term Potentiation: A Debate of Current Issues (Baudry M. and Davis J. L., eds.), MIT Press, Cambridge, MA, pp. 143–154.Google Scholar
  87. 87.
    Tang C.-M., Shi Q.-Y., Katchman A., and Lynch G. (1991) Modulation of the time course of fast EPSCs and glutamate chanenl kinetics by aniracetam.Science 254, 288–290.PubMedCrossRefGoogle Scholar
  88. 88.
    Staubli U., Kessler M., and Lynch G. (1990) Aniracetam has proportionally smaller effects on synapses expressing long-term potentiation: evidence that receptor changes subserve LTP.Psychobiology 18, 377–381.Google Scholar
  89. 89.
    Xiao P., Staubli U., Kessler M., and Lynch G. (1991) Selective effects of aniracetam across receptor types and forms of synaptic facilitation in hippocampus.Hippocampus 1, 373–380.PubMedCrossRefGoogle Scholar
  90. 90.
    Wang L.-Y., Salter M. W., and MacDonald J. F. (1991) Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases.Science 253, 1132–1135.PubMedCrossRefGoogle Scholar
  91. 91.
    Greengard P., Jen J., Nairn A. C., and Stevens C. F. (1991) Enhancement of the glutamate response by cAMP-dependent protein kinase in hippocampal neurons.Science 253, 1135–1138.PubMedCrossRefGoogle Scholar
  92. 92.
    Wang L.-Y., Dudek E. M., Browning M. D., and MacDonald J. F. (1994) Modulation of AMPA/kainate receptors in cultured murine hippocampal neurones by protein kinase C.J. Physiol. (Lond.) 475, 431–437.Google Scholar
  93. 93.
    Asztély F., Hanse E., Wigström H., and Gustafsson B. (1992) Aniracetam-evoked potentiation does not interact with long-term potentiation in the CA1 region of hippocampus.Synapse 11, 342–345.PubMedCrossRefGoogle Scholar
  94. 94.
    Cull-Candy S. G., Wyllie D. J. A., and Traynelis S. F. (1991) Excitatory amino acid-gated channel types in mammalian neurones and glia, inExcitatory Amino Acids and Synaptic Transmission (Wheal H. V. and Thomson A. M., eds.), Academic, London, pp. 69–91.Google Scholar
  95. 95.
    Wyllie D. J. A., Manabe T., and Nicoll R. A. (1994) A rise in postsynaptic Ca potentiates miniature excitatory postsynaptic currents and AMPA responses in hippocampal neurons.Neuron 12, 127–138.PubMedCrossRefGoogle Scholar
  96. 96.
    Hestrin S. (1992) Activation and desensitization of glutamate-activated channels mediating fast excitatory synaptic currents in the visual cortex.Neuron 9, 991–999.PubMedCrossRefGoogle Scholar
  97. 97.
    Jonas P., Major G., and Sakmann B. (1993) Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus.J. Physiol. (Lond.) 472, 615–663.Google Scholar
  98. 98.
    Kullmann D. M. (1993) Quantal variability of excitatory transmission in the hippocampus: implications for the opening probability of fast glutamate-gated channels.Proc. R. Soc. Lond. B 253, 107–116.CrossRefGoogle Scholar
  99. 99.
    Spruston N., Jonas P., and Sakmann B. (1995) Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons.J. Physiol. (Lond.) 482, 325–352.Google Scholar
  100. 100.
    Riveros N., Fiedler J., Lagos N., Munoz C., and Orrego F. (1986) Glutamate in rat brain cortex synaptic vesicles: influence of the vesicle isolation procedure.Brain Res. 386, 405–408.PubMedCrossRefGoogle Scholar
  101. 101.
    Villanueva S., Fiedler J., and Orrego F. (1990) A study in rat brain cortex synaptic vesicles of endogenous ligands for N-methyl-D-aspartate receptors.Neurosci. 37, 23–30.CrossRefGoogle Scholar
  102. 102.
    Redman S. (1990) Quantal analysis of synaptic potentials in neurons of the central nervous system.Physiol. Rev. 70, 165–198.PubMedGoogle Scholar
  103. 103.
    Edwards F. A., Konnerth A., and Sakmann B. (1990) Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study.J. Physiol. (Lond.) 430, 213–249.Google Scholar
  104. 104.
    Larkman A., Strafford K., and Jack J. (1991) Quantal analysis of excitatory synaptic action and depression in hippocampal slices.Nature 350, 344–347.PubMedCrossRefGoogle Scholar
  105. 105.
    Harris K. M. and Landis D. M. D. (1986) Membrane structure of synaptic junction in area CA1 of the rat hippocampus.Neuroscience 19, 857–872.PubMedCrossRefGoogle Scholar
  106. 106.
    Harris K. M. and Stevens J. K. (1989) Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical appearance.J. Neurosci. 9, 2982–2997.PubMedGoogle Scholar
  107. 107.
    Margiotta J. F., Berg D. K., and Dionne V. E. (1987) Cyclic AMP regulates the proportion of functional acetylcholine receptors on chicken ciliary ganglion neurons.Proc. Natl. Acad. Sci. USA 84, 8155–8159.PubMedCrossRefGoogle Scholar
  108. 108.
    Maren S., Tocco G., Standley S., Baudry M., and Thompson R. F. (1993) Postsynaptic factors in the expression of long-term potentiation (LTP): increased glutamate receptor binding following LTP induction in vivo.Proc. Natl. Acad. Sci. USA 90, 9654–9658.PubMedCrossRefGoogle Scholar
  109. 109.
    Lynch G. and Baudry M. (1984) The biochemistry of memory: a new and specific hypothesis.Science 224, 1057–1063.PubMedCrossRefGoogle Scholar
  110. 110.
    Kessler M., Arai A., Vanderklish P., and Lynch G. (1991) Failure to detect changes in AMPA receptor binding after long-term potentiation.Brain Res. 560, 337–341.PubMedCrossRefGoogle Scholar
  111. 111.
    Malinow R. (1994) LTP: desperately seeking resolution.Science 266, 1195–1196.PubMedCrossRefGoogle Scholar
  112. 112.
    Malinow R. (1991) Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP.Science 252, 722–724.PubMedCrossRefGoogle Scholar
  113. 113.
    Kullmann D. M. and Nicoll R. (1992) Long-term potentiation is associated with increases in quantal content and quantal amplitude.Nature 357, 240–244.PubMedCrossRefGoogle Scholar
  114. 114.
    Korn H. and Faber D. S. (1991) Quantal analysis and synaptic efficacy in the CNS.Trends Neurosci. 14, 439–445.PubMedCrossRefGoogle Scholar
  115. 115.
    Lisman J. (1985) A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylation kinase.Proc. Natl. Acad. Sci. USA 82, 3055–3057.PubMedCrossRefGoogle Scholar
  116. 116.
    Lisman J. and Goldring M. A. (1988) Feasibility of long-term storage of graded information by the Ca/calmodulin-dependent protein kinase molecules of the postsynaptic density.Proc. Natl. Acad. Sci. USA 85, 5320–5324.PubMedCrossRefGoogle Scholar
  117. 117.
    Lisman J. (1994) The CaM kinase II hypothesis for the storage of synaptic memory.Trends Neurosci. 17, 406–412.PubMedCrossRefGoogle Scholar
  118. 118.
    McGlade-McCulloh E., Yamamoto H., Tan S.-E., Brickey D. A., and Soderling T. R. (1993) Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II.Nature 362, 640–642.PubMedCrossRefGoogle Scholar
  119. 119.
    Pettit D. L., Perlman S., and Malinow R. (1994) Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons.Science 266, 1881–1885.PubMedCrossRefGoogle Scholar
  120. 120.
    Fukanaga K., Stoppini L., Miyamoto E., and Muller D. (1993) Long-term potentiation is associated with an increased activity of Ca/calmodulin-dependent protein kinase II.J. Biol. Chem. 268, 7863–7867.Google Scholar
  121. 121.
    Kennedy M. B., Bennet M. K., and Erondu N. E. (1983) Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase.Proc. Natl. Acad. Sci. USA 80, 7357–7361.PubMedCrossRefGoogle Scholar
  122. 122.
    Kelly P. T., McGuiness T. L., and Greengard P. (1984) Evidence that the major postsynaptic protein is a component of a Ca/calmodulin-dependent protein kinase.Proc. Natl. Acad. Sci. USA 81, 945–949.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Fredrik Asztély
    • 1
  • Bengt Gustafsson
    • 1
  1. 1.Institute of PhysiologyGöteborg UniversityGöteborgSweden

Personalised recommendations