Molecular Neurobiology

, Volume 12, Issue 2, pp 133–144 | Cite as

Retinal ganglion cell dendritic development and its control

Filling the gaps
  • Richard J. T. Wingate


The way in which central neurons acquire their complex and precise dendrite arbors is of considerable developmental interest. Using retinal ganglion cells (RGCs) as a model, the mechanisms that pattern dendritic development are beginning to emerge. As in other systems, final dendrite phenotype is achieved by a mixture of intrinsic and extrinsic determinants. The extrinsic determinants of RGC dendrite shape reflect the anatomical constraints of producing a paracrystalline mosaic of arbors that laminates the inner plexiform layer of the retina. In this article, the key features of RGC dendrite development are reviewed. The emerging molecular mechanisms behind dendritic laminar segregation and “dendritic competition” are described. The role of afferent extrinsic influences are contrasted with those of retrograde, activity-dependent target influences that may regulate the final maturational phase of dendrite remodeling.

Index Entries

Dendritic competition inner plexiform layer neurogenesis TTX NMDA APV APB lucifer yellow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barinaga M. (1995) Dendrites shed their dull image.Science 268, 200,201.PubMedCrossRefGoogle Scholar
  2. 2.
    Jaffe D., Johnston D., Lasser-Ross N., Lisman J., Miyakawa H., and Ross W. (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons.Nature 357, 244–246.PubMedCrossRefGoogle Scholar
  3. 3.
    Magee J. C. and Johnston D. (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons.Science 268, 301–304.PubMedCrossRefGoogle Scholar
  4. 4.
    Spruston N., Schiller Y., Stuart G., and Sakmann B. (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites.Science 268, 297–300.PubMedCrossRefGoogle Scholar
  5. 5.
    Koester S. E. and O'Leary D. D. M. (1992) Functional classes of cortical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern.J. Neurosci. 12, 1382–1393.PubMedGoogle Scholar
  6. 6.
    Vercelli A., Assal F., and Innocenti G. M. (1992) Emergence of calossally projecting neurons with stellate morphology in the visual cortex of the kitten.Exp. Brain Res. 90, 346–358.PubMedCrossRefGoogle Scholar
  7. 7.
    Kaspar E. M., Lubke J., Larkman A. U., and Blakemore C. (1994) Pyramidal neurons in layer 5 of the rat visual cortex. III. Differential maturation of axon targeting dendritic morphology and electrophysiological properties.J. Comp. Neurol. 339, 495–518.CrossRefGoogle Scholar
  8. 8.
    Bodnarenko S. R. and Chalupa L. M. (1993) Stratification of ON and OFF ganglion cell dendrites depends on glutamate-mediated afferent activity in the developing retina.Nature 364, 144–146.PubMedCrossRefGoogle Scholar
  9. 9.
    Bodnarenko S. R., Jeyarasasingam G., and Chalupa L. M. (1995) Development and regulation of dendritic stratification in retinal ganglion cells by glutamate-mediated afferent activity.J. Neurosci. 15, 7037–7045.PubMedGoogle Scholar
  10. 10.
    Dalva M. B., Ghosh A., and Shatz C. J. (1994) Independent control of dendritic and axonal form in the developing lateral geniculate nucleus.J. Neurosci. 14, 3588–3602.PubMedGoogle Scholar
  11. 11.
    Voyvodic J. T. (1989) Peripheral target regulation of dendritic geometry in the rat superior cervical ganglion.J. Neurosci. 9, 1997–2010.PubMedGoogle Scholar
  12. 12.
    Wingate R. J. T., FitzGibbon T., and Thompson I. D. (1992) Lucifer yellow retrograde tracers and fractal analysis characterise adult ferret retinal ganglion cells.J. Comp. Neurol. 323, 449–474.PubMedCrossRefGoogle Scholar
  13. 13.
    Wässle H., Peichl L., and Boycott B. B. (1981) Dendritic territories of cat retinal ganglion cells.Nature 292, 344, 345.PubMedCrossRefGoogle Scholar
  14. 14.
    Enroth-Cugell C. and Robson J. G. (1966) The contrast sensitivity of retinal ganglion cells of the cat.J. Physiol. (Lond.) 187, 517–552.Google Scholar
  15. 15.
    Altshuler D., Turner D., and Cepko C. (1991) Specification of cell type in the vertebrate retina, inDevelopment of the Visual System (Lam D. and Shatz C. J., eds.), MIT Press, Boston, MA, pp. 37–58.Google Scholar
  16. 16.
    Walsh C., Polley E. H., Hickey T. L., and Guillery R. W. (1983) Generation of cat retinal ganglion cells in relation to central pathways.Nature 302, 611–614.PubMedCrossRefGoogle Scholar
  17. 17.
    Reese B., Thompson W., and Peduzzi J. (1994) Birth dates of neurons in the ganglion cell layer of the ferret.J. Comp. Neurol. 341, 464–475.PubMedCrossRefGoogle Scholar
  18. 18.
    Dräger U. C. (1985) Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse.Proc. R. Soc. Lond. (Biol.) 224, 57–77.CrossRefGoogle Scholar
  19. 19.
    Turner D. L. and Cepko C. L. (1987) A common progenitor for neurons and glia persists in rat retina late in development.Nature 328, 131–136.PubMedCrossRefGoogle Scholar
  20. 20.
    Holt C., Bertsch T., Ellis H., and Harris W. (1988) Cellular determination in theXenopus retina is independent of lineage and birth date.Neuron 1, 15–26.PubMedCrossRefGoogle Scholar
  21. 21.
    Wetts R. and Fraser S. (1988) Multipotent precursors can give rise to all major cell types of the frog retina.Science 239, 1142–1145.PubMedCrossRefGoogle Scholar
  22. 22.
    Williams R. W. and Goldowitz D. (1992) Structure of clonal and polyclonal cell arrays in chimeric mouse retina.Development 89, 1184–1188.Google Scholar
  23. 23.
    Altshuler D. and Cepko C. (1992) A temporally regulated, diffusible activity is required for rod photoreceptor development in vitro.Development 114, 947–957.PubMedGoogle Scholar
  24. 24.
    Watanabe T. and Raff M. C. (1990) Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina.Neuron 4, 461–467.PubMedCrossRefGoogle Scholar
  25. 25.
    Lillien L. and Cepko C. (1992) Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGFa.Development 115, 253–266.PubMedGoogle Scholar
  26. 26.
    Guillemot F. and Cepko C. L. (1992) Retinal fate and ganglion cell differentiation are potentiated by acidic FGF in an in vitro assay of early retinal development.Development 114, 743–754.PubMedGoogle Scholar
  27. 27.
    Montague P. R. and Friedlander M. J. (1989) Expression of an intrinsic growth strategy by mammalian retinal neurons.Proc. Natl. Acad. Sci. USA 86, 7223–7227.PubMedCrossRefGoogle Scholar
  28. 28.
    Montague P. R. and Friedlander M. J. (1991) Morphologies and territorial coverage by isolated mammalian retinal ganglion cells.J. Neurosci. 11 1440–1457.PubMedGoogle Scholar
  29. 29.
    Wingate R. J. T. and Thompson I. D. (1995) The morphological development of mammalian retinal ganglion cells.Prog. Ret. Eye Res. 14, 413–435.CrossRefGoogle Scholar
  30. 30.
    Wingate R. J. T. and Thompson I. D. (1995) Axonal target choice and dendritic development of ferret beta retinal ganglion cells.Eur. J. Neurosci. 7, 723–731.PubMedCrossRefGoogle Scholar
  31. 31.
    Peichl L. (1989) Alpha and delta ganglion cells in the rat retina.J. Comp. Neurol. 286, 120–139.PubMedCrossRefGoogle Scholar
  32. 32.
    Maslim J. and Stone J. (1986) Synaptogenesis in the retina of the cat.Brain Res. 373, 35–48.PubMedCrossRefGoogle Scholar
  33. 33.
    Dunlop S. A. (1990) Early development of retinal ganglion cell dendrites in the marsupial Setonix brachyurus quokka.J. Comp. Neurol. 293, 425–447.PubMedCrossRefGoogle Scholar
  34. 34.
    Watanabe M., Rutishauser U., and Silver J. (1991) Formation of the retinal ganglion cell and optic fiber layers.J. Neurobiol. 22, 85–96.PubMedCrossRefGoogle Scholar
  35. 35.
    Maslim J., Webster M., and Stone J. (1986) Stages in the structural differentiation of retinal ganglion cells.J. Comp. Neurol. 254, 382–402.PubMedCrossRefGoogle Scholar
  36. 36.
    Maslim J. and Stone J. (1988) Time course of stratification of the dendritic fields of ganglion cells in the retina of the cat.Dev. Brain Res. 44, 87–93.CrossRefGoogle Scholar
  37. 37.
    Rapaport D. H. and Stone J. (1982) The site of commencement of maturation in mammalian retina: observations in the cat.Dev. Brain Res. 5, 273–279.CrossRefGoogle Scholar
  38. 38.
    Skaliora I., Scobey R., and Chalupa L. (1993) Prenatal development of excitability in cat retinal ganglion cells: action potentials and sodium currents.J. Neurosci. 13, 313–323.PubMedGoogle Scholar
  39. 39.
    Ramoa A. S., Campbell G., and Shatz C. J. (1987) Transient morphological features of identified ganglion cells in living fetal and neonatal retina.Science 237, 522–525.PubMedCrossRefGoogle Scholar
  40. 40.
    Ramoa A. S., Campbell G., and Shatz C. J. (1988) Dendritic growth and remodelling of cat retinal ganglion cells during fetal and postnatal development.J. Neurosci. 8, 4239–4261.PubMedGoogle Scholar
  41. 41.
    Penn A., Wong R. O. L., and Shatz C. J. (1994) Neuronal coupling in the developing mammalian retina.J. Neurosci. 14, 3805–3815.PubMedGoogle Scholar
  42. 42.
    Meister M., Wong R. O. L., Baylor D. A., and Shatz C. J. (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina.Science 252, 939–943.PubMedCrossRefGoogle Scholar
  43. 43.
    Wong R. O. L., Meister M., and Shatz C. J. (1993) Transient period of correlated bursting activity during development of the mammalian retina.Neuron 11, 923–938.PubMedCrossRefGoogle Scholar
  44. 44.
    Wong R. O. L., Chernjavsky A., Smith S., and Shak C. J. (1995) Early functional neural networks in the developing retina.Nature 374, 716–718.PubMedCrossRefGoogle Scholar
  45. 45.
    Cragg B. G. (1975) The development of synapses in the visual system of the cat.J. Comp. Neurol. 160, 147–166.PubMedCrossRefGoogle Scholar
  46. 46.
    Ng A. Y. K. and Stone J. (1982) The optic nerve of the cat: appearance and loss of axons during normal development.Dev. Brain Res. 5, 263–271.CrossRefGoogle Scholar
  47. 47.
    Williams R. W., Bastiani M. J., and Chalupa L. M. (1983) Loss of axons in the cat optic nerve following fetal unilateral enucleation: an electron microscopic analysis.J. Neurosci. 3, 133–144.PubMedGoogle Scholar
  48. 48.
    Famiglietti E. V. Jr. and Kolb H. (1976) Structural basis for ON- and OFF-center responses in retinal ganglion cells.Science 194, 193–195.PubMedCrossRefGoogle Scholar
  49. 49.
    Wong R. O. L., Herrmann K., and Shatz C. J. (1991) Remodelling of retinal ganglion cell dendrites in the absence of action potential activity.J. Neurobiol. 22, 685–497.PubMedCrossRefGoogle Scholar
  50. 50.
    Hahm J. O., Langdon R. B., and Sur M. (1991) Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors (see comments).Nature 351, 568–570.PubMedCrossRefGoogle Scholar
  51. 51.
    Fischer K. R., Oakley D. M., and Wong R. O. L. (1995) Developmental changes in the pattern of correlated spontaneous bursting activity in the ferret retina.Soc. Neurosci. Abstr. 21, 1559.Google Scholar
  52. 52.
    Cajal S. R. Y. (1893[1973]) La rétine des vertébrés inThe Vertebrate Retina (Rodieck R. W., ed.), W. H. Freeman, San Francisco, CA, pp. 781–904.Google Scholar
  53. 53.
    Kolb H. (1979) The inner plexiform layer in the retina of the cat: electron microscopic observations.J. Neurocytol. 8, 295–329.PubMedCrossRefGoogle Scholar
  54. 54.
    Wässle H., Grünert U., Martin P. R., and Boycott B. B. (1994) Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina.Vis. Res. 34, 561–579.PubMedCrossRefGoogle Scholar
  55. 55.
    Wässle H., Grünert U., Martin P. R., and Boycott B. B. (1995) Color coding in the primate retina: predictions and constraints from anatomy, inStructural and Functional Organization of the Neocortex, Exp. Brain Res., series 24 (Albowik B., Albus K., Kuhnt U., Nothdurft H.-C., and Wahle P., eds.), Springer-Verlag, Berlin, pp. 94–104.Google Scholar
  56. 56.
    Sur M., Humphrey A. L., and Sherman S. M. (1982) Monocular deprivation affects X- and Y-retinogeniculate terminations in cats.Nature 300, 183–185.PubMedCrossRefGoogle Scholar
  57. 57.
    Sur M., Weller R. E., and Sherman S. M. (1984) development of X- and Y-cell retinogeniculate terminations in kittens.Nature 310, 246–249.PubMedCrossRefGoogle Scholar
  58. 58.
    Garraghty P. E., Sur M., Weller R. E., and Sherman S. M. (1986) Morphology of retinogeniculate X and Y axon arbors in monocularly enucleated cats.J. Comp. Neurol. 251, 198–215.PubMedCrossRefGoogle Scholar
  59. 59.
    Perry V. H. and Linden R. (1982) Evidence for dendritic competition in the developing retina.Nature 297, 683–685.PubMedCrossRefGoogle Scholar
  60. 60.
    Eysel U. T., Peichl L., and Wässle H. (1985) Dendritic plasticity in the early postnatal feline retina: quantitative characteristics and sensitive period.J. Comp. Neurol. 242, 134–145.PubMedCrossRefGoogle Scholar
  61. 61.
    Perry V. H. and Maffei L. (1988) Dendritic competition: competition for what?Dev. Brain Res. 41, 195–208.CrossRefGoogle Scholar
  62. 62.
    Deplano S., Ratto G. M., and Bisti S. (1994) Interplay between the dendritic trees of alpha and beta ganglion cells during the development of the cat retina.J. Comp. Neurol. 342, 152–160.PubMedCrossRefGoogle Scholar
  63. 63.
    Kirby M. A. and Chalupa L. M. (1986) Retinal crowding alters the morphology of alpha retinal ganglion cells.J. Comp. Neurol. 251, 532–541.PubMedCrossRefGoogle Scholar
  64. 64.
    Leventhal A. G., Schall J. D., and Ault S. J. (1988) Extrinsic determinants of retinal ganglion cell structure in the cat.J. Neurosci. 8, 2028–2038.PubMedGoogle Scholar
  65. 65.
    Bähr M., Wizenmann A., and Thanos S. (1992) Effect of bilateral tectum lesions on retinal ganglion cell morphology in rats.J. Comp. Neurol. 320, 370–380.PubMedCrossRefGoogle Scholar
  66. 66.
    Ault S. J., Thompson K. G., Zhou Y., and Leventhal A. G. (1993) Selective depletion of beta cells affects the development of alpha cells in car retina.Vis. Neurosci. 10, 237–245.PubMedGoogle Scholar
  67. 67.
    Schall J. D. and Leventhal A. G. (1987) Relationships between ganglion cell dendritic structure and retinal topography in the cat.J. Comp. Neurol. 257, 149–159.PubMedCrossRefGoogle Scholar
  68. 68.
    Linden R. (1993) Dendritic competition in the developing retina: ganglion cell density gradients and laterally displaced dendrites.Vis. Neurosci. 10, 313–324.PubMedGoogle Scholar
  69. 69.
    Wikler K. C. and Finlay B. L. (1989) developmental heterochrony and the evolution of species differences in retinal specialisations, inThe Development of the Vertebrate Retina (Finlay B. L. and Sengelaub D. R., eds.), Plenum, New York, pp. 227–246.Google Scholar
  70. 70.
    Williams R. W., Cavada C., and Reinoso S. F. (1993) Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat.J. Neurosci. 13, 208–228.PubMedGoogle Scholar
  71. 71.
    Perry V. H. (1989) Dendritic interactions between cell populations in the developing retina, inThe Development of the Vertebrate Retina (Finlay B. L. and Sengelaub D. R., eds.), Plenum, New York, pp. 149–171Google Scholar
  72. 72.
    Schilling K., and Dickinson M. H., Connor J. A., and Morgan J. I. (1991) Electrical activity in cerebellar cultures determines Purkinje cell dendrite growth patterns.Neuron 1, 891–902CrossRefGoogle Scholar
  73. 73.
    Sanes D. H. and Chokshi P. (1992) Glycinergic transmission influences the development of dendrite shape.Neuroreport 3, 323–326.PubMedCrossRefGoogle Scholar
  74. 74.
    Kalb R. G. (1994) Regulation of motor neuron dendrite growth by NMDA receptor activation.Development 120, 3063–3071.PubMedGoogle Scholar
  75. 75.
    Zheng J., Felder M., Connor J., and Poo M.-M. (1994) Turning of nerve growth cones induced by neurotransmitters.Nature 368, 140–143.PubMedCrossRefGoogle Scholar
  76. 76.
    Redburn D. A., Agarwal S. H., Messersmith E. K., and Mitchell C. K. (1992) Development of the glutamate system in rabbit retina.Neurochem. Res. 17, 61–66.PubMedCrossRefGoogle Scholar
  77. 77.
    Pow D. V., Crook D. K., and Wong R. O. L. (1994) Early appearance and transient expression of putative amino acid neurotransmitters and related molecules in the developing rabbit retina: an immunocytochemical study.Vis. Neurosci. 11, 1115–1134.PubMedGoogle Scholar
  78. 78.
    Mattson M. P. (1994) Secreted forms of beta-amyloid precursor protein modulate dendrite outgrowth and calcium responses to glutamate in cultured embryonic hippocampal neurons.J. Neurobiol. 25, 439–450.PubMedCrossRefGoogle Scholar
  79. 79.
    Spitzer N. C. (1994) Spontaneous Ca2+ spikes and waves in embryonic neurons: signaling systems for differentiation.TINS 17, 115–118.PubMedGoogle Scholar
  80. 80.
    Wong R. O. L. (1995) Cholinergic regulation of (Ca2+)i during cell division and differentiation in the mammalian retina.J. Neurosci. 15, 2696–2706.PubMedGoogle Scholar
  81. 81.
    Dann J. F., Buhl E. H., and Peichl L. (1987) Dendritic maturation in cat retinal ganglion cells: a lucifer yellow study.J. Neurosci. Lett. 80, 21–26.CrossRefGoogle Scholar
  82. 82.
    Dann J. F., Buhl E. H., and Peichl L. (1988) Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina.J. Neurosci. 8, 1485–1499.PubMedGoogle Scholar
  83. 83.
    Yamasaki E. N. and Ramoa A. S. (1993) Dendritic development of abnormally projecting rat retinal ganglion cells.J. Comp. Neurol. 329, 277–289.PubMedCrossRefGoogle Scholar
  84. 84.
    Wingate R. J. T. and Thompson I. D. (1994) Targeting and activity-related dendritic modification in mammalian retinal ganglion cells.J. Neurosci. 14, 6621–6637.PubMedGoogle Scholar
  85. 85.
    Perry V. H. and Walker M. (1980) Morphology of cells in the ganglion cell layer during development of the rat retina.Proc. R. Soc. Lond. [Biol] 208, 433–445.CrossRefGoogle Scholar
  86. 86.
    Wong R. O. L. (1990) Differential growth and remodelling of ganglion cell dendrites in the postnatal rabbit retina.J. Comp. Neurol. 294, 109–132.PubMedCrossRefGoogle Scholar
  87. 87.
    Kirby M. A. and Steineke T. C. (1991) Early dendritic outgrowth of primate retinal ganglion cells.Vis. Neurosci. 7, 513–530.PubMedGoogle Scholar
  88. 88.
    Wässle H. (1988) Dendritic maturation of retinal ganglion cells.TINS 11, 87–89.PubMedGoogle Scholar
  89. 89.
    Wong R. O. L., Yamawaki R. M., and Shatz C. J. (1992) Synaptic contacts and the transient dendritic spines of developing retinal ganglion cells.Eur. J. Neurosci. 4, 1387–1397.PubMedCrossRefGoogle Scholar
  90. 90.
    Lau K. C., So K.-F., Tay D., and Jen L. S. (1991) Elimination of transient dendritic spines in ipsilaterally projecting retinal ganglion cells in rats with neonatal unilateral thalamotomy.Neurosci. Lett. 121, 255–258.PubMedCrossRefGoogle Scholar
  91. 91.
    Lau K. C., So K.-F., and Tay D. (1992) APV prevents the elimination of transient dendritic spines on a population of retinal ganglion cells.Brain Res. 595, 171–174.PubMedCrossRefGoogle Scholar
  92. 92.
    Lau K. C., So K.-F., and Tay D. (1990) Effects of visual or light deprivation on the morphology, and the elimination of the transient features during development, of type I retinal ganglion cells in hamsters.J. Comp. Neurol. 300, 583–592.PubMedCrossRefGoogle Scholar
  93. 93.
    Blaser P. F., Catsicas S., and Clarke P. G. H. (1990) Retrograde modulation of dendritic geometry in the vertebrate brain during development.Dev. Brain Res. 57, 139–142.CrossRefGoogle Scholar
  94. 94.
    Péquignot Y. and Clarke P. G. H. (1992) Changes in lamination and neuronal survival in the isthmo-optic nucleus following the intraocular injection of tetrodotoxin in chick embryos.J. Comp. Neurol. 321, 336–350.PubMedCrossRefGoogle Scholar
  95. 95.
    Rand M. and Breedlove S. (1995) Androgen alters the dendritic arbors of SNB motor-neurons by actin upon their target muscles.J. Neurosci. 15, 4408–4426.PubMedGoogle Scholar
  96. 96.
    Purves D., Snider W. D., and Voyvodic J. T. (1988) Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system.Nature 336, 123–128.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Richard J. T. Wingate
    • 1
  1. 1.Department of Developmental Neurobiology, Division of Anatomy and Cell Biology, UMDSGuy’s HospitalLondonUK

Personalised recommendations