Advertisement

Molecular Neurobiology

, Volume 3, Issue 4, pp 201–236 | Cite as

VIP: Molecular biology and neurobiological function

  • Illana Gozes
  • Douglas E. Brenneman
Article

Abstract

In the mammalian brain, a major regulatory peptide is vasoactive intestinal peptide (VIP). This 28 amino acid peptide, originally isolated from the porcine duodenum, was later found in the central and peripheral nervous systems and in endocrine cells, where it exhibits neurotransmitter and hormonal roles. Increasing evidence points to VIP’s importance as a mediator or a modulator of several basic functions. Thus, VIP is a major factor in brain activity, neuroendocrine functions, cardiac activity, respiration, digestion, and sexual potency. In view of this peptide’s importance, the mechanisms controlling its production and the pathways regulating its functions have been reviewed. VIP is a member of a peptide family, including peptides such as glucagon, secretin, and growth hormone releasing hormone. These peptides may have evolved by exon duplication coupled with gene duplication. The human VIP gene contains seven exons, each encoding a distinct functional domain on the protein precursor or the mRNA. VIP gene transcripts are mainly found in neurons or neuron-related cells. VIP gene expression is regulated by neuronal and endocrine signals that contribute to its developmental control. VIP exerts its function via receptor-mediated systems, activating signal transduction pathways, including cAMP. It can act as a neurotransmitter, neuromodulator, and a secretagog. As a growth and developmental regulator, VIP may have a crucial effect as a neuronal survival factor. We shall proceed from the gene to its multiple functions.

Index Entries

Vasoactive intestinal peptide gene expression neuropeptides neurotransmitters neuromodulators neuronal survival 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe H., Engler D., Molitch M. E., Bollinger-Gruber J., and Reichlin S. (1985) Vasoactive intestinal peptide is a physiological mediator of prolactin release in the rat.Endocrinology 116, 1383–1390.PubMedGoogle Scholar
  2. Agoston D. V., Borroni E., and Richardson P. J. (1988a) Cholinergic surface antigen chol-1 is present in a subclass of VIP-containing rat cortical synaptosomes.J. Neurochem. 50, 1659–1662.PubMedGoogle Scholar
  3. Agoston D. V., Conlon J. M., and Whittaker, V. P. (1988b) Selective depletion of the acetylcholine and vasoactive intestinal polypeptide of the guinea-pig myenteric plexus by differential mobilization of distinct transmitter pools.Exp. Brain Res. 72, 535–542.PubMedGoogle Scholar
  4. Agoston D. V. and Lisziewicz J. (1989) Calcium uptake and protein phosphorylation in myenteric neurons, like, the release of vasoactive intestinal polypeptide and acetylcholine, are frequency dependent.J. Neurochem. 52, 1637–1640.PubMedGoogle Scholar
  5. Agoston D. V. and Whittaker V. P. (1989) Characterization, by size, density, osmotic fragility, and immunoaffinity, of acetylcholine- and vasoactive intestinal polypeptide-containing storage particles from myenteric neurones of the guinea-pig.J. Neurochem. 52, 1474–1480.PubMedGoogle Scholar
  6. Ahren B. and Hedner P. (1989) Effects of VIP and helodermin on thyroid hormone secretion in the mouse.Neuropeptides 13, 59–64.PubMedGoogle Scholar
  7. Albers H. E., Ninamitani N., Stopa E., and Ferris C. F. (1987) Light selectivity alters vasoactive intestinal peptide and peptide histidine isoleucine immunoreactivity within the rat suprachiasmatic nucleus.Brain Res. 437, 189–192.PubMedGoogle Scholar
  8. Allen J., Hansen V., Maigaard S., Andersson K. E., and Forman A. (1988) Effects of some neurotransmitters and prostanoids on isolated human intracervical arteries.Am. J. Obstet. Gynecol. 158, 637–641.PubMedGoogle Scholar
  9. Allen J. M., Hoyle N. R., Yeats J. C., Ghatei M. A., Thomas D. G., and Bloom S. R. (1985) Neuropeptides in neurological tumors.J. Neuro-Oncol. 3, 197–202.Google Scholar
  10. Amara S. G., Jones V., Rosenfeld M. G., Ong E. S., and Evans R.M. (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products.Nature 298, 240–244.PubMedGoogle Scholar
  11. Anteunis A., Astesano A., Portha B., Hejblum G., and Rosselin G. (1989) Ultrastructural analysis of VIP internalization in rat beta- and acinar cells in situ.Am. J. Physiol. 256, G689–697.PubMedGoogle Scholar
  12. Arey, B. J. and Freeman, M. E. (1989) Hypothalamic factors involved in the endogenous stimulatory rhythm regulating prolactin secretion.Endocrinology 124, 878–883.PubMedGoogle Scholar
  13. Avidor R., Eilam R., Malach R., and Gozes I. 91989) VIP-mRNA is increased in hypertensive rats.Brain Res., in press.Google Scholar
  14. Audigier S., Barberis C., and Jard S. (1986) Vasoactive intestinal polypeptide increases inositol phospholipid breakdown in the rat superior cervical ganglion.Brain Res. 376, 363–367.PubMedGoogle Scholar
  15. Baldino F., Jr., Fitzpatrick-McElligot S., O’Kane T. M., and Gozes I. (1988) Hormonal regulation of somatostatin messenger RNA.Synapse 2, 317–325.PubMedGoogle Scholar
  16. Baldino F., Jr., Fitzpatrick-McElligott, S., Gozes I., and Card J. P. (1989) Localization of VIP and PHI-27 messenger RNA in rat thalamic and cortical neurons.J. Molec. Neurosci., in press.Google Scholar
  17. Barbezat G. O. and Grossman M. I. (1971) Intestinal secretion: Stimulation by peptides.Science 174, 422, 423.PubMedGoogle Scholar
  18. Bardrum B., Ottesen B., Fahrenkrug J., and Fuchs A. R. (1988) Release of oxytocin and vasopressin by intracerebroventricular vasoactive intestinal peptide.Endocrinology 123, 2249–2254.PubMedGoogle Scholar
  19. Bataille D., Talbot J. N., Milhaud G., Mutt V., and Rosselin G. (1981) Effect of vasoactive intestinal peptide (VIP) on prolactin secretion in man.CR Seaces Acad. Sci. (III) 292, 511–513.Google Scholar
  20. Beinfeld M. C., Korchak D. M., Roth B. L., and O’Donohue T. L. (1984) The distribution and chromatographic characterization of PHI (peptide histidine isoleucine amide)-27-like peptides in rat and porcine brain.J. Neurosci. 4, 2681–2688.PubMedGoogle Scholar
  21. Belai A., Lincoln J., Milner P., and Burnstock G. (1988) Progressive changes in adrenergic, serotonergic, and peptidergic nerves in proximal colon of streptozotocin-diabetic rats.Gastroenterology 9, 1234–1241.Google Scholar
  22. Bell G. I. (1986) The glucagon superfamily: precursor structure and gene organization.Peptides 7, 27–36.PubMedGoogle Scholar
  23. Bell G. I., Sanchez-Pescador R., Laybourn P. J., and Najarian R. C. (1983) Exon duplication and divergence in the human preproglucagon gene.Nature 304, 368–371.PubMedGoogle Scholar
  24. Bergman Y., Rice D., Grosschedl R., and Baltimore D. (1984)Proc. Natl. Acad. Sci. USA 81, 7041–7045.PubMedGoogle Scholar
  25. Besson J., Rotsztejn W., Labourthe M., Epelbaum J., Beaudet A., Kordon C., and Rosselin G. (1979) Vasoactive intestinal peptide (VIP): brain distribution, subcellular localization and effect of deafferentation of the hypothalamus in male rats.Brain Research 165, 79–85.PubMedGoogle Scholar
  26. Birnstiel M. L., Busslinger M., and Strub K. (1985) Transcription termination and 3′ processing: The end is in site!Cell 41, 349–359.PubMedGoogle Scholar
  27. Bissonnette B. M., Collen M. J., Adachi H., Jensen R. T., and Gardner J. D. (1984) Receptors for vasoactive intestinal peptide and secretin on rat pancreatic acini.Am. J. Physiol. 246, G710-G717.PubMedGoogle Scholar
  28. Bloom S. R., Christofides N. D., Delamarter J., Buell G., Kawashima E., and Polak J.M. (1983) Diarrhoea in vipoma patients associated with cosecretion of a second active peptide (peptide hist-idine isoleucine) explained by a single coding gene.Lancet 2, 1163–1165.PubMedGoogle Scholar
  29. Bluet-Pajot M.-T., Mounier F., Leonard J.-F., Kordon C., and Durand D. (1987) Vasoactive intestinal peptide induces a transient release of growth hormone in the rat.Peptides 8, 35–38.PubMedGoogle Scholar
  30. Bodner M., Fridkin M., and Gozes I. (1985) VIP and PHM-27 sequences are located on two adjacent exons in the human genome.Proc. Natl. Acad. Sci. USA 82, 3548–3551.PubMedGoogle Scholar
  31. Boissard C., Marie J. C., Hejblum G., Gespach C., and Rosselin G. (1986) Vasoactive intestinal peptide receptor regulation and reversible desensitization in human colonic carcinoma cells in culture.Cancer Res. 46, 4406–4413.PubMedGoogle Scholar
  32. Borgundvaag B. and George S. R. (1988) Estrogen regulation of rat anterior pituitary adenylate cyclase.Mol. Cell Endocrinol. 59, 35–45.PubMedGoogle Scholar
  33. Bosler O. and Beaudet A. (1985) VIP neurons as prime synaptic targets for serotonin afferents in rat suprachiasmatic nucleus: A combined radioautographic and immunocytochemical study.J. Neurocytol. 14, 749–763.PubMedGoogle Scholar
  34. Bowen B., Steinberg J., Laemmli U. K., and Weintroub H. (1980) The detection of DNA binding proteins by protein blotting.Nuc. Acid Res. 8, 1–20.Google Scholar
  35. Brar A. K., Fink G., Maletti M., and Rostene W. (1985) Vasoactive intestinal peptide in rat hypophysial portal blood: Effects of electrical stimulation of various brain areas, the oestrous cycle and anesthetics.J. Endocrinol. 106, 275–280.PubMedGoogle Scholar
  36. Brayden J. E. and Conway M. A. (1988) Neuropeptide Y and vasoactive intestinal polypeptide in cerebral arteries of the rat: Relationships between innervation pattern and mechanical response.Regul. Pept. 22, 253–265.PubMedGoogle Scholar
  37. Brenneman D. E., Eiden L. E., and Siegel R. E. (1985) Neurotrophic action of VIP on spinal cord cultures.Peptides 6 (suppl. 2), 35–39.PubMedGoogle Scholar
  38. Brenneman D. E. and Eiden L. E. (1986) Vasoactive intestinal peptide and electrical activity influence neuronal survival.Proc. Natl. Acad. Sci. USA 83, 1159–1162.PubMedGoogle Scholar
  39. Brenneman D. E. and Foster G. A. (1987a) Structural specificity of peptides influencing neuronal survival during development.Peptides 8, 687–694.PubMedGoogle Scholar
  40. Brenneman D. E., Neale E. A., Foster G. A., d’Autremont S., and Westbrook G. L. (1987b) Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide.J. Cell Biol. 104, 1603–1610.PubMedGoogle Scholar
  41. Brenneman D. E. (1988a) Two mechanisms may contribute to the neuronal survival-promoting action of VIP: Neurotrophic factor releasing activity and glial mitogenesis.Soc. Neurosci. Abstr. 14, 254.Google Scholar
  42. Brenneman D. E., Buzy J. M., Ruff M. R., and Pert C. B. (1988b) Peptide T sequences prevent neuronal cell death produced by the envelope protein (gp120) of the human immunodeficiency virus.Drug Dev. Res. 15, 361–369.Google Scholar
  43. Brenneman D. E., Westbrook G., Fitzgerald S. P., Ennist D. L., Elkins K. L., Ruff M., and Pert C. B. (1988c) Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide.Nature 335, 639–642.PubMedGoogle Scholar
  44. Burnstock G., Mirsky R., and Belai A. (1988) Reversal of nerve damage in streptozotocin-diabetic rats by acute application of insulin in vitro.Clin. Science 75, 629–635.Google Scholar
  45. Buscher M., Rahmsdorpf H. J., Litfin M., Karin M., and Herrlich P. (1988) Activation pathways converge to the same enhancer element.Oncogene 3, 301–311.PubMedGoogle Scholar
  46. Carati C. J., Creed K. E., and Keogh E. J. (1988) Vascular changes during penile erection in the dog.J. Physiol. 400, 75–88.PubMedGoogle Scholar
  47. Card J. P. and Moore R. Y. (1982) Ventral lateral geniculate nucleus efferents to the rat suprachiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity.Comp. Neurol. 206, 390–396.Google Scholar
  48. Card J. P., Fitzpatrick-McElligott S., Gozes I., and Baldino F., Jr. (1988) Localization of vasopressin-, vasoactive intestinal polypeptide-, peptide histidine isoleucine- and somatostatin-mRNA in rat suprachiasmatic nucleus.Cell Tissue Res. 252, 307–315.PubMedGoogle Scholar
  49. Carmeliet P. and Denef C. (1988) Immunocytochemical and pharmacological evidence for an intrinsic cholinomimetic system modulating prolactin and growth hormone release in rat pituitary.Endocrinology 123, 1128–1139.PubMedGoogle Scholar
  50. Chee C. A., Roozendaal B., Swaab D. F., Goudsmit E., and Mirmiran M. (1988) Vasoactive intestinal polypeptide neuron changes in the senile rat suprachiasmatic nucleus.Neurobiol. Aging 9, 307–312.PubMedGoogle Scholar
  51. Chneiweiss H., Glowinski J., and Premont J. (1984) Do secretin and vasoactive intestinal peptide have independent receptors on striatal neurons and glial cells in primary cultures?J. Neurochem. 47, 608–613.Google Scholar
  52. Cholewinski A. J. and Wilkin G. P. (1988) Astrocytes from forebrain, cerebellum and spinal cord differ in their responses to vasoactive intestinal peptide.J. Neurochem. 51, 1626–1633.PubMedGoogle Scholar
  53. Chomczynski P., Down T. R., and Frohman L. A. (1988) Feedback regulation of growth hormone (GH)-releasing hormone gene expression by GH in rat hypothalamus.Mol. Endocrinol. 2, 236–241.PubMedGoogle Scholar
  54. Cottrell G. A., Veldhuis H. D., Rostene W. H., and de Kloet E. R. (1984) Behavioral action of vasoactive intestinal peptide (VIP).Neuropeptides 4, 331–341.PubMedGoogle Scholar
  55. Cridland R. A. and Henry J. L. (1988) Effects of intrathecal administration of neuropeptides on a spinal nociceptive reflex in the rat: VIP, galanin, CGRP, TRH, somatostatin and angiotensin II.Neuropeptides 11, 23–32.PubMedGoogle Scholar
  56. Crowe R and Burnstock G. (1988) An increase of vasoactive intestinal polypeptide-, but not neuropeptide Y-, substance P- or catecholamine-containing nerves in the iris of the streptozotocin-induced diabetic rat.Exp. Eye Res. 47, 751–759.PubMedGoogle Scholar
  57. Crozier T. A., Drobnik L., Stafforst D., and Kettler D. (1988) Opiate modulation of the stress-induced increase of vasoactive intestinal peptide (VIP) in plasma.Horm. Metabol. Res. 20, 352–356.Google Scholar
  58. Dalsgaard C.-J., Hultgardh-Nilsson A., Haegerstrand A., and Nilsson J. (1989) Neuropeptides as growth factors. Possible roles in human diseases.Regul. Pept. 25, 1–9.PubMedGoogle Scholar
  59. Daniel E. E., Helmy-Elkholy A., Jager L. P., and Kannan M. S. (1983) Neither a purine nor VIP is the mediator of inhibitory nerves of opossum oesophageal smooth muscle.J. Physiol. (London)336, 243–260.Google Scholar
  60. Dartt D. A., Baker A. K., Rose P. E., Murphy S. A., Ronco L. V., and Unser M. F. (1988) Role of cyclic AMP and Ca2+ in potentiation of rat lacrimal gland protein secretion.Invest. Ophthalmol. Vis. Sci. 29, 1732–1738.PubMedGoogle Scholar
  61. Deschodt-Lanckman M., Robberecht P., and Christophe J. P. (1977) Characterization of VIP-sensitive adenylate cyclase in guinea pig brain.FEBS Lett. 83, 76–80.PubMedGoogle Scholar
  62. Devillier P., Matran R., and Marsac J. (1988) The nonadrenergic, noncholinergic neuropeptide system and asthma.Rev. Mal. Respir. 5, 7–20.PubMedGoogle Scholar
  63. Dey R. D., Hoffpauir J., and Said S. I. (1988) Colocalization of vasoactive intestinal peptide- and substance P-containing nerves in cat bronchi.Neuroscience 24, 275–281.PubMedGoogle Scholar
  64. Dixson A. F., Kendrick K. M., Blank M. A., and Bloom S. R. (1984) Effects of tactile and electrical stimuli upon release of vasoactive intestinal polypeptide in the mammalian penis.J. Endocrinol. 100, 249–252.PubMedGoogle Scholar
  65. Dodd J., Kelly J. S., and Said S. I. (1979) Excitation of CA1 neurones of the rat hippocampus by the octacosapeptide, vasoactive intestinal peptide (VIP).Br. J. Pharmacol. 66, 126P.Google Scholar
  66. Drucker D. J. and Asa S. (1988) Glucagon gene expression in the vertebrate brain.J. Biol. Chem. 263, 13,475–13,478.Google Scholar
  67. Eckenstein F. and Baughman R.W. (1984) Two types of cholinergic innervation in cortex, one colocalized with vasoactive intestinal polypeptide.Nature 309, 153–155.PubMedGoogle Scholar
  68. Eckenstein F. P., Baughman R. W., and Quinn J. (1988) An anatomical study of cholinergic innervation in rat cerebral cortex.Neuroscience 25, 457–474.PubMedGoogle Scholar
  69. Ekblad E., Ekman R., Hákanson R., and Sundler F. (1988) Projections of peptide-containing neurons in rat colon.Neuroscience 27, 655–674.PubMedGoogle Scholar
  70. el Battari A., Martin J. M., Luis J., Pouzol O., Secchi J., Marvaldi J., and Pichon J. (1988) Solubilization of the active vasoactive intestinal peptide receptor from human colonic adenocarcinoma.J. Biol. Chem. 263, 17,685–17,689.Google Scholar
  71. Emson P. C., Fahrenkrug J., Schaffalitzky de Muckadel O. B., Jessell T. M., and Iversen L. L. (1978) Vasoactive intestinal polypeptide (VIP): vesicular localization and potassium evoked release from rat hypothalamus.Brain Res. 143, 174–178.PubMedGoogle Scholar
  72. Emson P. C., Gilbert R. F. T., Loren I., Fahrenkrug J., Sundler F., and Schaffalitzky de Muckadell O. B. (1979) Development of vasoactive intestinal polypeptide (VIP) containing neurones in the rat brain.Brain Res. 177, 437–444.PubMedGoogle Scholar
  73. Epelbaum J., Tapia-Arancidia L., Besson J., Rotsztejn W., and Kordon C. (1979) Vasoactive intesinal peptide inhibits release of somatostatin from hypothalamus in vitro.Eur. J. Pharmacol. 58, 493–495.PubMedGoogle Scholar
  74. Evans P.D. and Villegas J. (1988) The action of vasoactive intestinal peptide antagonists on peptidergic modulation of the squid Schwann cell.J. Exp. Biol. 138, 259–269.PubMedGoogle Scholar
  75. Fahrenkrug J., Ottesen B., and Palle C. (1988) Vasoactive intestinal polypeptide and the reproductive system.Ann. NY Acad. Sci. 527, 393–404.PubMedGoogle Scholar
  76. Falsetti L., Zanagnolo V., Gastaldi A., Memo M., and Missale C. (1988) Vasoactive intestinal polypeptide (VIP) selectively stimulates prolactin release in healthy women.Synecol. Endocrinol. 2, 11–18.Google Scholar
  77. Ferri G. L., Adrian T. E., Allen J. M., Soimero L., and Cancellieri A. (1988) Intramural distribution of regulatory peptides in the sigmoid-recto-anal region of the human gut.Gut 29, 762–768.PubMedGoogle Scholar
  78. Ferron A., Siggins G. R., and Bloom F. E. (1985) Vasoactive Intestinal Peptide acts synergistically with norepinephrine to depress spontaneous discharge rate in cerebral cortical neurons.Proc. Natl. Acad. Sci. USA 82, 8810–8812.PubMedGoogle Scholar
  79. Fink G. (1985) Has the prolactin inhibiting peptide at last been found?Nature 316, 487, 488.PubMedGoogle Scholar
  80. Fink J. S., Verhave M., Kasper S., Tsukada T., Mandel G., and Goodman R. H. (1988) The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer.Proc. Natl. Acad. Sci. USA 85, 6662–6666.PubMedGoogle Scholar
  81. Fink T. and Weihe E. (1988) Multiple neuropeptides in nerves supplying mammalian lymph nodes: Messenger candidates for sensory and autonomic neurotransmission.Neurosci. Lett. 90, 39–44.PubMedGoogle Scholar
  82. Gafvelin G., Andersson M., Dimaline R., Jornvall H., and Mutt V. (1988) Isolation and characterization of a variant form of vasoactive intestinal polypeptide.Peptides 9, 469–474.PubMedGoogle Scholar
  83. Geppetti P., De Rossi M., Mione M. C., Renzi D., and Amenta F. (1988) Age-related changes in vasoactive intestinal polypeptide levels and distribution in the rat lung.J. Neural Transm. 74, 1–10.PubMedGoogle Scholar
  84. Giachetti A., Said S. I., Reynolds R. C., and Koniges F. C. (1977) Vasoactive intestinal polypeptide in brain: Localization and release from isolated nerve terminals.Proc. Natl. Acad. Sci. USA 74, 3414–3428.Google Scholar
  85. Ginzburg I. and Littauer U. Z. (1984) The expression and cellular organization of microtubule proteins: Brain specific probes in the study of differential expression during development.Molecular Biology of the Cytoskeleton (Borisy G. G., Cleveland D. W., and Murphy D. B., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 357–366.Google Scholar
  86. Gjerris A., Gjerris F., Sorensen P. S., Sorensen E. B. and Christensen N. J. (1988) Do concentrations of neurotransmitters measured in lumbar cerebrospinal fluid reflect the concentrations at brain level.Acta Neurochir. 91, 55–59.Google Scholar
  87. Goetzl E. J., Sreedharan S. P., and Turck C. W. (1988) Structurally distinctive vasoactive intestinal peptides from rat basophilic leukemia cells.J. Biol. Chem. 263, 9083–9086.PubMedGoogle Scholar
  88. Gordeladze J. O., Sletholt K., Thorn N. A., and Gautvik K. M. (1988) Hormone-sensitive adenylate cyclase of prolactin-producing rat pituitary adenoma (GH4Cl) cells: Molecular organization.Eur. J. Biochem. 177, 665–672.PubMedGoogle Scholar
  89. Gorden P., Comi R. J., and Maton P. N. (1989) NIH conference. Somatostatin and somatostatin analogue (SMS 201–995) in treatment of hormone-secreting tumors of the pituitary and gastrointestinal tract and non-neoplastic diseases of the gut.Ann. Intern. Med. 110, 35–50.PubMedGoogle Scholar
  90. Gotoh E., Yamagami T., Yamamoto H., and Okamoto, H. (1988) Chromosomal assignment of human VIP/PHM-27 gene to 6q26–q27 region by spot blot hybridization and in situ hybridization.Biochem. Int. 17, 555–562.PubMedGoogle Scholar
  91. Gourdji D., Bataille D., Vauclin N., Grouselle D., Rosselin G., and Tixier-Vidal A. (1979) Vasoactive intestinal peptide (VIP) stimulates prolactin (PRL) release and cAMP production in a rat pituitary cell line (GH3/B6). Additive effects of VIP and TRH on PRL release.FEBS Lett. 104, 165–168.PubMedGoogle Scholar
  92. Gozes I., Milner R. J., Liu F.-T., Johnson E., Battenberg E. L. F., Katz D., and Bloom F. E. (1983a) Monoclonal antibodies against vasoactive intestinal polypeptide: Studies of structure and related antigens.J. Neurochem. 41, 549–556.PubMedGoogle Scholar
  93. Gozes I., O’Connor D. T., and Bloom F. E. (1983b) A possible high molecular weight precursor to vasoactive intestinal polypeptide sequestered into catecholamine storage granule preparation.Regul. Pept. 6, 111–119.PubMedGoogle Scholar
  94. Gozes I., Bodner M., Shani Y., and Fridkin M. (1984a) Detection of mRNAs containing regulatory peptide sequences using synthetic oligodeoxynucleotide probes.J. Cell Biochem. 26, 147–156.PubMedGoogle Scholar
  95. Gozes I., Bodner M., Shwartz H., Shani Y., and Fridkin M. (1984b) Studies toward the biosynhesis of vasoactive intestinal peptide (VIP).Peptides 5, 161–166.PubMedGoogle Scholar
  96. Gozes I., Bodner M., Shani Y., and Fridkin M. (1986) Structure and expression of the vasoactive intestinal peptide (VIP) gene in a human tumor.Peptides 7, 1–6.PubMedGoogle Scholar
  97. Gozes I. and Shani Y. (1986) Hypothalamic VIP-mRNA is increased in lactating rats.Endocrinol. 119, 2497–2501.Google Scholar
  98. Gozes I. and Tsafriri A. (1986) Detection of VIP-encoding mRNA in the rat ovaries.Endocrinol. 119, 2606–2610.Google Scholar
  99. Gozes I. (1987) VIP gene expression.Brain Peptides (update volume 1), chapter 10 (Martin J. B., Brownstein M. J., and Krieger D., eds.), Wiley, NY, pp. 141–162.Google Scholar
  100. Gozes I., Avidor R., Katznelson D., Yahav Y., Croce C., and Hubner K. (1987a) The gene encoding vasoactive intestinal peptide is located on human chromosome 6p21-6qter.Hum. Genet. 75, 41–44.PubMedGoogle Scholar
  101. Gozes I., Nakai H., Byers M., Avidor R., Weinstein Y., Shani Y., and Shows T. B. (1987b) Sequential expression in the nervous system of the VIP and c-myb genes located on the human chromosomal region 6q24.Somatic Cell and Mol. Gen. 13, 305–313.Google Scholar
  102. Gozes I., Giladi E., and Shani Y. (1987c) VIP-gene expression: Putative mechanism of information storage at the RNA level.J. Neurochem. 48, 1136–1141.PubMedGoogle Scholar
  103. Gozes I., Shani Y., and Rostene W. H. (1987d) Developmental expression of the VIP-gene in brain and intestine.Mol. Brain Res. 2, 137–148.Google Scholar
  104. Gozes I., Shachter P., Shani Y., and Giladi E. (1988) Vasoactive intestinal peptide gene expression from embryos to aging rats.Neuroendocrinology 47, 27–31.PubMedGoogle Scholar
  105. Gozes I., Avidor R., Biegon A., and Baldino F., Jr. (1989a) Lactation elevates vasoactive intestinal peptide messenger ribonucleic acid in rat suprachiasmatic nucleus.Endocrinol. 124, 181–186.Google Scholar
  106. Gozes I., Fridkin M., and Brenneman D. E. (1989b) A novel antagonist to vasoactive intestinal peptide.Soc. Neurosci. Abstr. 15, 216 (abstr. 921).Google Scholar
  107. Gozes I., Meltzer E., Rubinrout S., Brenneman D. E., and Fridkin M. (1989c) Vasoactive intestinal peptide potentiates sexual behavior: Inhibition by novel antagonist.Endocrinol., in press.Google Scholar
  108. Gozes I., Shani Y., Liu B., and Burbach, J. P. H. (1989d) Diurnal variations in vasoactive intestinal peptide messenger RNA in the suprachiasmatic nucleus of the rat.Neurosci. Res. Commuun., in press.Google Scholar
  109. Gozes I., Werner H., Fawzi M. A. A., Shani Y., Fridkin M., and Koch Y. (1989e) Estrogen regulation of vasoactive intestinal peptide mRNA in the rat hypothalamus.J. Mol. Neurosci. 1, 55–61.PubMedGoogle Scholar
  110. Gubits R. M., Hazelton J. L., and Simantov R. (1988) Variation in c-fos gene expression during rat brain development.Mol. Brain Res. 3, 197–202.Google Scholar
  111. Guillemin R., Brazeau P., Bohlen P., Esch F., Fing N., and Wehrenberg W. B. (1982) Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly.Science 218, 505–507.Google Scholar
  112. Hajos F., Zilles K., Gallatz K., Schleicher A., and Kaplan I. (1988) Ramification patterns of vasoactive intestinal polypeptide (VIP)-cells in the rat primary visual cortex. An immunohistochemical study.Anat. Embryol. 178, 197–206.PubMedGoogle Scholar
  113. Haskins J. T., Samson W. K., and Moss R. L. (1982) Evidence for vasoactive intestinal polypeptide (VIP) altering the firing rate of preoptic, septal and midbrain central gray neurons.Reg. Pept. 3, 113–123.Google Scholar
  114. Hayakawa Y., Obata K.-I., Itoh N., Yanaihara N., and Okamoto H. (1984) Cyclic AMP regulation of pro-vasoactive intestinal polypeptide/PHM-27 synthesis in human neuroblastoma cells.J. Biol. Chem. 259, 9207–9211.PubMedGoogle Scholar
  115. Haynes L. W. (1985) Modulation of cholinergic transmission by VIP, a peptide co-transmitter.Trends Pharmacol. 6, 427, 428.Google Scholar
  116. Hedlund B., Dufy B., and Barker L. (1988) Vasoactive intestinal polypeptide alters GH3/B6 pituitary cell excitability.Pflugers Arch. 411, 173–179.PubMedGoogle Scholar
  117. Heinrich G., Gros P., and Habener J. F. (1984) Glucagon gene sequence: Four of six exons encode separate functional domains of rat pre-proglucagon.J. Biol. Chem. 259, 14,082–14,087.Google Scholar
  118. Heinz-Erian P., Dey R. D., Flux M., and Said S. I. (1985) Deficient vasoactive intestinal peptide innervation in the sweat glands of cystic fibrosis patients.Science 229, 1407, 1408.PubMedGoogle Scholar
  119. Hejblum G., Gali P., Boissard C., Astesamo A., Hui B., and Rosselin G. (1988) Combined ultrastructural and biochemical study of cellular processing of vasoactive intestinal peptide and its receptors in human colonic carcinoma cells in culture.Cancer Res. 48, 6201–6210.PubMedGoogle Scholar
  120. Helke C. J. and Hill K. M. (1988) Immunohistochemical study of neuropeptides in vagal and glossopharyngeal afferent neurons in the rat.Neuroscience 26, 539–551.PubMedGoogle Scholar
  121. Hill J. M., Farrar W. L., and Pert C. B. (1986) Localization of the T4 antigen/AIDS virus receptor in monkey and rat brain: Prominence in cortical regions.Psychopharmacol. Bull. 22, 689–694.PubMedGoogle Scholar
  122. Hioki Y., Hoshino M., Yanaihara C., Ogino K., Sato H., and Yanaihara N. (1983) Characterization of VIP-like immunoreactivity in a human neuroblastoma cell line,Peptide Chemistry 1982, Sakakibara S., ed., Protein Research Foundation, Osaka, Japan, pp. 263–266.Google Scholar
  123. Hisano S., Chikamori-Aoyama M., Katoh S., Kagotani Y., Daikoku S., and Chihara K. (1988) Suprachiasmatic nucleus neurons immunoreactive for vasoactive intestinal neuropeptide have synaptic contacts with axons immunoreactive for neuropeptide Y: An immunoelectron microscopic study in the rat.Neurosci. Lett. 26, 145–150.Google Scholar
  124. Hokfelt T., Johansson O., Ljungdahl A., Lunberg J. M., and Schultzberg M. (1980) Peptidergic neurons,Nature 284, 515–521.PubMedGoogle Scholar
  125. Hultgardh-Nilsson A., Nilsson J., Jonzon B., and Dalsgaard C. J. (1988) Growth-inhibitory properties of vasoactive intestinal peptide.Reg. Pept. 22, 267–274.Google Scholar
  126. Hunter L. W., Rorie D. K., Yaksh T. L., and Tyce G. M. (1988) Concurrent separation of catecholamines, vasoactive intestinal peptide, and neuropeptide Y in superfusate and tissue extract.Anal. Biochem. 173, 340–352.PubMedGoogle Scholar
  127. Hyman S. E., Comb M., Lin Y.-S., Pearlberg J., Green M. R., and Goodman H. M. (1988) A common transacting factor is involved in transcriptional regulation of neurotransmitter genes by cyclic AMP.Mol. Cell. Biol. 8, 4225–4233.PubMedGoogle Scholar
  128. Ichikawa H., Nishikawa S., Wakisaka S., Matsuo S., and Takano Y. (1988) Coexistence of vasoactive intestinal polypeptide- and substance P-like immunoreactivities in the tongue of the guinea pig.Neurosci. Lett. 89, 283–285.PubMedGoogle Scholar
  129. Inoue Y. and Kanno T. (1982) Secretory effects of vasoactive intestinal polypeptide (VIP), adrenaline and carbachol in isolated lobules of the rat parotid gland.Bio. Res. 3, 384–389.Google Scholar
  130. Ito S., Kimura A., and Ohga A. (1988) Development of noncholinergic, non-adrenergic excitatory and inhibitory responses to intramural nerve stimulation in rat stomach.Br. J. Pharmacol. 93, 684–692.PubMedGoogle Scholar
  131. Itoh N., Obata K., Yanaihara N., and Okamoto H. (1983) Human preprovasoactive intestinal polypeptide contains a novel PHI-27-Like peptide, PHM-27.Nature 304, 547–549.PubMedGoogle Scholar
  132. Johansson O. and Lundberg J. M. (1981) Ultrastructural localization of VIP-Like immunoreactivity in large dense-core resides of ‘cholinergic-type’ nerve terminals in cat exocrine glands.Neuroscience 6, 847–862.PubMedGoogle Scholar
  133. Kaji A., Shigematsu H., Fujita K., Maeda T., and Watanabe S. (1988) Parasympathetic innervation of cutaneous blood vessels by vasoactive intestinal polypeptide-immunoreactive and acetylcholinesterase-positive nerves: Histochemical and experimental study on rat lower lip.Neurosci. 25, 353–362.Google Scholar
  134. Kaji H., Kazuo C., Abe H., Kita T., Kashio Y., Okimura Y., and Fujita T. (1985) Effect of passive immunization with antisera to vasoactive intestinal polypeptide and peptide histidine isoleucine amide on S-Hydroxy-L-Tryptophan-induced prolactin release in rats.Endocrinol. 117, 1914–1919.Google Scholar
  135. Kamata K., Sakamoto A., and Kasuya Y. (1988) Changes in sensitivity of the rat stomach fundus to various drugs in streptozotocin-induced diabetic rats.Jpn. J. Pharmacol. 47, 99–102.PubMedGoogle Scholar
  136. Kanamatsu T. and Hirano S. (1988) Differences in ME-LI and VIP-LI in discrete brain regions of seizure-naive and seizure-experienced E1 miceNeurochem. Res. 13, 983–988.PubMedGoogle Scholar
  137. Kawatani M., Rutigliano M., and de Groat W. C. (1985) Depolarization and muscarinic excitation induced in a sympathetic ganglion by vasoactive intestinal polypeptide.Science 229, 879–881.PubMedGoogle Scholar
  138. Kerins C. and Said S. I. (1973) Hyperglycemic and glycogenolotic effects of vasoactive intestinal polypeptide.Proc. Soc. Exp. Biol. Med. 142, 1014–1017.PubMedGoogle Scholar
  139. King J. T., Jr. and LaMotte C. C. (1988) VIP-, SS-, and GABA-like immunoreactivity in the mid-hippocampal region of E1 (epileptic) and C578L/6 mice.Brain Res. 475, 192–197.PubMedGoogle Scholar
  140. Klein C. M. and Burden H. W. (1988) Substance P- and vasoactive intestinal polypeptide (VIP)-immunoreactive nerve fibers in relation to ovarian postganglionic perikarya in para- and prevertebral ganglia: Evidence from combined retrograde tracing and immunocytochemistry.Cell Tissue Res. 252, 403–410.PubMedGoogle Scholar
  141. Knapp T. R., Fehrer S. C., Silsby J. L., Porter T. E., and Behnke E. J. (1988) Gonadal steroid modulation of basal and vasoactive intestinal polypeptide-stimulated prolactin release by turkey anterior pituitary cells.Gen. Comp. Endocrinol. 72, 226–236.PubMedGoogle Scholar
  142. Koh S.-W. M., Kyritsis A., and Chader G. J. (1984) Interaction of neuropeptides and cultured glial (Muller) cells of the chick retina: Elevation of intracellular cyclic AMP by vasoactive intestinal peptide and glucagon.J. Neurochem. 43, 199–203.PubMedGoogle Scholar
  143. Krieger D. T., Brownstein M. J., and Martin J. B. (1983)Brain Peptides, Wiley, New York.Google Scholar
  144. Kummer W. and Heym C. (1988) Neuropeptide distribution in the cervico-thoracic paravertebral ganglia of the cat with particular reference to calcitonin gene-related peptide immunoreactivity.Cell Tissue Res. 252, 463–471.PubMedGoogle Scholar
  145. Laburthe M. and Couvinneau A. (1988) Molecular analysis of vasoactive intestinal peptide receptors. Vasoactive intestinal peptide and related peptides, Said S. I. and Mutt V., eds.,Ann. NY Acad Sci. 527, 296–313.PubMedGoogle Scholar
  146. Laburthe M., Breant B., and Rouyer-Fessard C. (1984) Molecular identification of receptors for vasoactive intestinal peptide in rat intestinal epithelium by covalent cross-linking. Evidence for two classes of binding sites with different structural and functional properties.Eur. J. Biochem. 139, 181–187.PubMedGoogle Scholar
  147. Laemle L. K. (1988) Vasoactive intestinal polypeptide (VIP)-like immunoreactivity in the suprachiasmatic nucleus of the perinatal rat.Brain Res. 469, 308–312.PubMedGoogle Scholar
  148. Lam K. S., Lechan R. M., Minamitani N., Segerson T. P., and Reichlin S. (1989) Vasoactive intestinal peptide in the anterior pituitary is increased in hypothyroidism.Endocrinol. 124, 1077–1084.Google Scholar
  149. LaMotte C. C. (1988) Lamina X of primate spinal cord: distribution of five neuropeptides and serotonin.Neurosci. 25, 639–658.Google Scholar
  150. Lasater E. M., Watling K. J., and Dowling J. E. (1983) Vasoactive intestinal peptide alters membrane potential and cyclic nucleotide levels in retinal horizontal cells.Science 221, 1070–1072.PubMedGoogle Scholar
  151. Lee T. J., Saito A., and Berezin I. (1984) Vasoactive intestinal polypeptide-like substance: the potential transmitter for cerebral vasodilation.Science 224, 898–901.PubMedGoogle Scholar
  152. Levy Holtzman R., Malach R., and Gozes I. (1989) Disruption of the optic pathway during development affects vasoactive intestinal peptide mRNA expression.New Biologist, in press.Google Scholar
  153. Lewin B. (1983)Genes, Wiley, New York.Google Scholar
  154. Lin Y.-S. and Green M. R. (1988) Interaction of a common cellular transcription factor, ATF, with regulatory elements in both Ela- and cyclic AMP-inducible promoters.Proc. Natl. Acad. Sci. USA 85, 3396–3400.PubMedGoogle Scholar
  155. Linder S. T., Barkhem A., Norberg H., Person M., Schalling M., Hokfelt T., and Magnusson G. (1987) Structure and expression of the gene encoding the vasoactive intestinal peptide precursor.Proc. Natl. Acad. Sci. USA 84, 605–609.PubMedGoogle Scholar
  156. Liu Y.-X., Kasson B. G., Dahl K. D., and Hsueh A. J. W. (1987) Vasoactive intestinal peptide stimulate plasminogen activator activity by cultured rat granulosa cells and cumulus-oocyte complexes.Peptide 8, 29–33.Google Scholar
  157. Lopez F. J., Dominguez J. R., Sanchez-Franco F., and Negro Vilar A. (1989) Role of dopamine and vasoactive intestinal peptide in the control of pulsatile prolactin secretion.Endocrinol. 124, 527–535.Google Scholar
  158. Luine V. N., Rostene W., Rhodes J., and McEwen B. S. (1984) Activation of choline acetyl transferase by vasoactive intestinal peptide.J. Neurochem. 42, 1131–1134.PubMedGoogle Scholar
  159. Luis J., Martin J. M., el Battari A., Marvaldi J., and Pichon J. (1988) The vasoactive intestinal peptide (VIP) receptor: recent data and hypothesis.Biochimie 70, 1311–1322.PubMedGoogle Scholar
  160. Lundberg J. M., Hedlund B., and Bartfai T. (1982) Vasoactive intestinal polypeptide enhances muscarinic ligand binding in cat submandibular salivary gland.Nature 295, 147–149.PubMedGoogle Scholar
  161. Magistretti P. J., Morrison J. H., Shoemaker W. J., Sapin V., and Bloom F. E. (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: A possible regulatory mechanism for the local control of energy metabolism.Proc. Natl. Acad. Sci. USA 78, 6535–6539.PubMedGoogle Scholar
  162. Magistretti P. J. and Schorderet M. (1984) VIP and noradrenaline act synergistically to increase cyclic AMP in cerebral cortex.Nature 308, 280–282.PubMedGoogle Scholar
  163. Magistretti P. J. (1988) Regulation of glycogenolysis by neurotransmitters in the central nervous system.Diabetes Metab. 14, 237–246.Google Scholar
  164. Mains R. E., Eipper B. A., Glembotski C. C., and Dores R. M. (1983) Strategies for the biosynthesis of bioactive peptides.Trends Neurosci. 6, 229–235.Google Scholar
  165. Makhlouf G. M., Zfass A. M., Said S. I., and Schebalin M. (1978) Effects of synthetic vasoactive intestinal peptide (VIP), secretin and their partial sequences or gastric secretion.Proc. Soc. Exp. Biol. Med. 157, 565–568.PubMedGoogle Scholar
  166. Malhotra R. K., Wakade T. D., and Wakade A. R. (1988) Vasoactive intestinal polypeptide and muscarine mobilize intracellular Ca2+ through breakdown of phosphoinositides to induce catecholamine secretion.J. Biol. Chem. 263, 2123–2126.PubMedGoogle Scholar
  167. Marchis-Mouren G., Martin J. M., Luis J., el Battari A., Muller J. M., Marvaldi J., and Pichon J. (1988) HT 29, a model cell line: Stimulation by the vasoactive intestinal peptide (VIP); VIP receptor structure and metabolism.Biochimie 70, 663–667.PubMedGoogle Scholar
  168. Marie J.-C., Hoa D., Jackson R., Hejblum G., and Rosselin G. (1985) The biological relevance of HPLC-purified vasoactive intestinal polypeptide monoiodinated at tyrosine 10 or tyrosine 22.Reg. Pept. 12, 113–123.Google Scholar
  169. Masuko S. and Chiba T. (1988) Projection pathways, co-existence of peptides and synaptic organization of nerve fibers in the inferior mesenteric ganglion of the guinea-pig.Cell Tissue Res. 253, 507–516.PubMedGoogle Scholar
  170. Mayo K. E., Cerelli G. M., Lebo R. V., Bruce B. D., Rosenfeld M. G., and Evans R. M. (1985) Gene encoding human growth hormone-releasing factor precursor: Structure, sequence, and chromosomal assignment.Proc. Natl. Acad. Sci. USA 82, 63–67.PubMedGoogle Scholar
  171. McCann S. M., Lumpkin M. D., Mizunuma H., Khorram O., Ottlecz A., and Samson W. K. (1984) Peptidergic and dopaminergic control of prolactin release.Trends Neurosci. 7, 127–131.Google Scholar
  172. McGregor G. P., Woodhams P. L., O’Shaughnessy D. J., Ghatei M. A., Polak J. M., and Bloom S. R. (1982) Developmental changes in bombesin, substance P, somatostatin and vasoactive intestinal polypeptide in the rat brain.Neurosci. Lett. 28, 21.PubMedGoogle Scholar
  173. Mezey E. and Kiss J. Z. (1985) Vasoactive intestinal peptide-containing neurons in the paraventricular nucleus may participate in regulating prolactin secretion.Proc. Natl. Acad. Sci. USA 82, 245–247.PubMedGoogle Scholar
  174. Mihara S., Katayama Y., and Nishi S. (1985) Slow postsynaptic potentials in neurons of submucous plexus of guinea-pig caecum and their mimicry by noradrenaline and various peptides.Neurosci. 16, 1057–1068.Google Scholar
  175. Mikkelsen J. D. and Moller M. (1988) Vasoactive intestinal peptide in the hypothalamo-hypophysial system of the Mongolian gerbil.J. Comp. Neurol. 1, 87–98.Google Scholar
  176. Misbahuddin M., Oka M., Nakanishi A., and Morita K. (1988) Stimulatory effect of vasoactive intestinal polypeptide on catecholamine secretion from isolated guinea pig adrenal chromaffin cells.Neurosci. Lett. 92, 202–206.PubMedGoogle Scholar
  177. Miskimins W. K., Roberts M. P., McClelland A., and Ruddle F. H. (1985) Use of a protein-blotting procedure to identify nuclear proteins that recognize the promoter region of the transferrin receptor gene.Proc. Natl. Acad. Sci. USA 82, 6741–6744.PubMedGoogle Scholar
  178. Mitsuhashi M. and Payan D. G. (1987) The mitogenic effects of vasoactive neuropeptides on cultured smooth muscle cell lines.Life Sci. 40, 853–861.PubMedGoogle Scholar
  179. Mo N. and Dun N. J. (1984) Vasoactive intestinal polypeptide facilitates muscarinic transmission in mammalian sympathetic ganglia.Neurosci. Lett. 52, 19–23.PubMedGoogle Scholar
  180. Montminy M. R. and Bilezikjian L. M. (1987) Binding of a nuclear protein to the cyclic AMP responsive element of the somatostatin gene.Nature 328, 175–178.PubMedGoogle Scholar
  181. Moore D. D., Marks A. R., Buckley D. I., Kapler G., Payvar F., and Goodman H. M. (1985) The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor.Proc. Natl. Acad Sci USA 82, 699–702.PubMedGoogle Scholar
  182. Moore T. C., Spruck C. H., and Said S. I. (1988) Depression of lymphocyte traffic in sheep by vasoactive intestinal peptide (VIP).Immunol. 64, 475–478.Google Scholar
  183. Moore R. Y. (1983) Organization and function of a central nervous system circadian oscillator: The suprachiasmatic hypothalamic nucleus.Fed. Proc. 42, 2783–2789.PubMedGoogle Scholar
  184. Morel G., Besson J., Rosselin G., and Dubois P. M. (1982) Ultrastructural evidence for endogenous vasoactive intestinal peptide-like immunoreactivity in the pituitary gland.Neuroendocrinol. 34, 85–89.Google Scholar
  185. Morrison J. H., Magistretti P. J., Benoit R., and Bloom F. E. (1984) The distribution and morphological characteristics of the intracortical VIP-positive cells: An immunohistochemical analysis.Brain Res. 292, 269–282.PubMedGoogle Scholar
  186. Munemura M., Agui T., and Sibley D. R. (1989) Chronic estrogen treatment promotes a functional uncoupling of the D2 dopamine receptor in rat anterior pituitary gland.Endocrinol. 124, 346–355.Google Scholar
  187. Murai I., Reichlin S., and Ben-Jonathan N. (1989) The peak phase of the proestrous prolactin surge is blocked by either posterior pituitary lobectomy or antisera to vasoactive intestinal peptide.Endocrinol. 124, 1050–1055.Google Scholar
  188. Nguyen T. D. (1989) Peptide T from human immunodeficiency virus envelope does not interact with hepatic, intestinal and colonic vasoactive intestinal peptide (VIP) receptors.Peptides 9, 425–428.Google Scholar
  189. Nichols R., Lee T. D., and Andrews P. C. (1988) Pancreatic proglucagon processing: Isolation and structures of glucagon and glucagon-like peptide from gene I.Endocrinol. 123, 2639–2645.Google Scholar
  190. Nishizawa M., Hayakawa Y., Yanihara N., and Okamoto H. (1985) Nucleotide sequence divergence and functional constraint in VIP precursor mRNA evolution between human and rat.FEBS Lett. 183, 55–59.PubMedGoogle Scholar
  191. Nobou F., Besson J., Rostene W., and Rosselin G. (1985) Ontogeny of vasoactive intestinal peptide and somatostatin in different structures of the rat brain: Effects of hypo- and hypercorticism.Dev. Brain Res. 20, 296–301.Google Scholar
  192. Noguchi T., Sugisaki T., Kanamatsu T., Satoh I., and Nishikawa, N. (1988) Reduced vasoactive intestinal polypeptide immunoreactivity in the pituitaries of hormone-deficient mutant mice.J. Endocrinol. 118, 179–185.PubMedGoogle Scholar
  193. Nurko S., Dunn B. M., and Rattan S. (1989) Peptide histidine isoleucine and vasoactive intestinal polypeptide cause relaxation of opossum internal anal sphincter via two distinct receptors.Gastroenterol. 96, 403–414.Google Scholar
  194. Obata K., Itoh N., Okamoto H., Yanaihara C., Yanaihara N., and Suzuki T. (1981) Identification and processing of biosynthetic precursors to vasoactive intestinal polypeptide in human neuroblastoma cells.FEBS Lett. 136, 123–126.PubMedGoogle Scholar
  195. Ohsawa K., Hayakawa Y., Nishiawa M., Yamagami T., Yamamoto H., Yanaihara N., and Okamoto H. (1985) Synergistic stimulation of VIP/PHM-27 gene expression by cyclic AMP and phorbol esters in human neuroblastoma cells.Biochem. Biophys. Res. Commun. 132, 885–891.PubMedGoogle Scholar
  196. Ohtsuka S., Miyake A., Nishizaki T., Tasaka K., and Tanizawa O. (1988) Vasoactive intestinal peptide stimulates gonadotrophic-releasing hormone release from rat hypothalamus in vitro.Acta Endocrinol. 117, 399–402.PubMedGoogle Scholar
  197. Ollerenshaw S., Jarvis D., Woolcock A., Sullivan C., and Scheibner T. (1989) Absence of immunoreactive vasoactive intestinal peptide in tissue from the lungs of patients with asthma.N. Engl. J. Med. 320, 1244–1248.PubMedGoogle Scholar
  198. Ottaway C. A. and Greenberg G. R. (1984) Interaction of vasoactive intestinal peptide with mouse lymphocytes: Specific binding and the modulation of mitogen responses.J. Immunol. 132, 417–423.PubMedGoogle Scholar
  199. Ottesen B., Wagner G., Virag R., and Fahrenkrug J. (1984) Penile erection: Possible role for vasoactive intestinal polypeptide as a neurotransmitter.Br. Med. J. 288, 9–11.Google Scholar
  200. Pandol S. J., Dharmsathaphorn K., Schoeffield M. S., Vale W., and Rivier J. (1986) Vasoactive intestinal peptide receptor antagonist (4Cl-D-Phe6, Leu17) VIP.Am. J. Physiol. 250, G553-G557.PubMedGoogle Scholar
  201. Patthi S., Simerson S., and Velicelebi G. (1988) Solubilization of rat lung vasoactive intestinal peptide receptors in the active state. Characterization of the binding properties and comparison with membrane-bound receptors.J. Biol. Chem. 263, 19,363–19,369.Google Scholar
  202. Paul S. (1989) Decreased selectivity of vasoactive intestinal peptide receptors by GTP.Biochem. Pharmacol. 38, 699–702.PubMedGoogle Scholar
  203. Paul S. and Said S. I. (1985) Solubilization and physical separation of active high- and low-affinity receptors for vasoactive intestinal peptide (VIP).Reg. Pept. 3, S52.Google Scholar
  204. Paul S. and Said S. I. (1988) Human autoantibody to vasoactive intestinal peptide: Increased incidence in muscular exercise.Life Science 43, 1079–1084.Google Scholar
  205. Pelletier G., Leclerc R., Puviani R., and Polak J. (1981) Electron immunocytochemistry in vasoactive intestinal polypeptide (VIP) in the rat brain.Brain Research 210, 356–360.PubMedGoogle Scholar
  206. Perry V. H. and Gordon S. J. (1987) Modulation of CD4 antigen on macrophages and microglia in rat brain.J. Exp. Med. 166, 1138–1143.PubMedGoogle Scholar
  207. Pert C. B., Hill J. M., Ruff M. R., Berman R. M., Robey W. G., Arthur L. O., Ruscetti F. W., and Farrar W. L. (1986) Octapeptides deduced from the neuropeptide receptor-like pattern of antigen T4 in brain potently inhibit human immunodeficiency virus receptor binding and T-cell infectivity.Proc. Natl. Acad. Sci. USA 83, 9254–9258.PubMedGoogle Scholar
  208. Pert C. B., Smith C. C., Ruff M. R., and Hill J. M. (1988) AIDS and its dementia as a neuropeptide disorder: role of VIP receptor blockade by human immunodeficiency virus envelope.Ann. Neurol. 23, S71-S73.PubMedGoogle Scholar
  209. Philippe J., Drucker D. J., Knepel W., Jepeal L., Misulovin Z., and Habener J. F. (1988) Alpha-cell-specific expression of the glucagon promoter element by the interaction of DNA-binding proteins.Mol. Cell. Biol. 8, 4877–4888.PubMedGoogle Scholar
  210. Phillis J. W., Kirkpartick J. R., and Said, S. I. (1978) Vasoactive intestinal polypeptide excitation of central neurons.Can. J. Physiol. Pharmacol. 56, 337–340.PubMedGoogle Scholar
  211. Piper P. J., Said S. I., and Vane J. R. (1970) Effects on smooth muscle preparation of identified vasoactive peptides from intestine and lung.Nature 225, 1144–1146.PubMedGoogle Scholar
  212. Pless D. D. and Lennarz, W. J. (1977) Enzymatic conversion of proteins to glycoproteins.Proc. Natl. Acad. Sci. USA 74, 134–138.PubMedGoogle Scholar
  213. Poston G. J., Yao C. Z., Upp J. R., Alexander R. W., Townsend C. M., and Thompson J. C. (1988) Vasoactive intestinal peptide inhibits the growth of hamster pancreatic cancer but not human pancreatic cancer in vivo.Pancreas 3, 439–443.PubMedGoogle Scholar
  214. Pruss R. M., Moskal J. R., Eiden L. E., and Beinfeld M. C. (1985) Specific regulation of vasoactive intestinal polypeptide biosynthesis by phorbol ester in bovine chromaffin cells.Endocrinol. 117, 1020–1026.Google Scholar
  215. Quik M., Iversen L. L., and Bloom S. R. (1978) Effect of vasoactive intestinal peptide (VIP) and other peptides on cAMP accumulation in rat brain.Biochem. Pharmacol. 27, 2209–2213.PubMedGoogle Scholar
  216. Rauscher F. J., III, Cohen D. R., Curran T., Bos T. J., Vogt P. K., Bohmann D., Tjian R., Franza B. R., Jr. (1988) Fos-associated protein p39 is the product of the june proto-oncogene.Science 240, 1010–1016.PubMedGoogle Scholar
  217. Reichlin S. (1988) Neuroendocrine significance of vasoactive intestinal polypeptide.Ann. NY Acad. Sci. 527, 431–449.PubMedGoogle Scholar
  218. Reid A. M., Shulkes A., and Titchen D. A. (1988) Effects of the vagus nerves on gastric motility and release of vasoactive intestinal polypeptide in the anaesthetized lamb.J. Physiol. 396, 11–24.PubMedGoogle Scholar
  219. Riabowol K. T., Fink J. S., Gilman M. Z., Walsh D. A., Goodman R. H., and Feramisco J. R. (1988) The catalytic subunit of cAMP-dependent protein kinase induces expression of genes containing cAMP responsive elements.Nature 336, 83–86.PubMedGoogle Scholar
  220. Robberecht P., De Neef P., Lammens M., Deschodt-Lanckman M., and Christophe J. P. (1978) Specific binding of vasoactive intestinal peptide to brain membranes of the guinea pig.Eur. J. Biochem. 90, 147–154.PubMedGoogle Scholar
  221. Robberecht P., Vandermeers A., Vandermeers-Piret M. C., Svoboda M., DeNeef P., DeGraef J., Woussen-Colle M. C., Yanaihara N., Yanaihara C., and Christophe J. (1985) Immunoreactive helodermin a new candidate neuropeptide in Mammalian.Reg. Pep. 3, S17.Google Scholar
  222. Robbins R. and Landon R. M. (1985) The effects of neurotensin, vasoactive intestinal polypeptide and other neuropeptides on the secretion of somatostatin from cerebral cortical cells.Brain Res. 332, 161–164.PubMedGoogle Scholar
  223. Rosselin G., Anteunis A., Astesano C., Boissard C., Boissard Gall P., Hejblum G., and Marie, J. C. (1988) Regulation of the vasoactive intestinal peptide receptor.Ann. NY Acad. Sci. 527, 220–237.PubMedGoogle Scholar
  224. Rostene W. H. (1984) Neurobiological and neuroendocrine functions of the vasoactive intestinal peptide (VIP).Prog. Neurobiol. 22, 103–129.PubMedGoogle Scholar
  225. Rotsztejn W. H., Benoist L., Besson J., Beraud G., Bluet-Pajot M. T., Kordon G., Rosselin G., and Duval J. (1980) Effect of vasoactive intestinal peptide (VIP) on the release of adenohypophyseal hormones from purified cells obtained by unit gravity sedimentation.Neuroendocrinol. 31, 282–286.Google Scholar
  226. Ruberg M., Rotszteijn W. H., Arancibia S., Besson J., and Enjalbert A. (1978) Stimulation of prolactin release by vasoactive intestinal peptide.Eur. J. Pharmacol. 51, 319, 320.PubMedGoogle Scholar
  227. Ruff M. R., Martin B. M., Ginns E. I., Farrar W. L., and Pert C. B. (1987) CD4 receptor binding peptides that block HIV infectivity cause human monocyte chemotaxis. Relationship to vasoactive intestinal peptide.FEBS Lett. 211, 17–22.PubMedGoogle Scholar
  228. Sacerdote P., Ruff M. R., and Pert C. B. (1987) Vasoactive intestinal peptide (1–12): A ligand for the CD4 (T4)/human immunodeficiency virus receptor.J. Neurosci. Res. 18, 102–107.PubMedGoogle Scholar
  229. Said S. I. and Mutt V. (1970) Polypeptide with broad biological activity: Isolation from small intestine.Science 169, 1217, 1218.PubMedGoogle Scholar
  230. Said S. I. and Faloona G. R. (1975) Elevated plasma and tissue levels of vasoactive intestinal polypeptide in the watery-diarrhea syndrome due to pancreatic bronchogenic and other tumors.N. Engl. J. Med. 293, 155–160.PubMedGoogle Scholar
  231. Said S. I. and Porter J. C. (1979) Vasoactive intestinal polypeptide: Release into hypophyseal portal blood.Life Sci. 24, 227–230.PubMedGoogle Scholar
  232. Said S. I., ed. (1982) Vasoactive Intestinal Polypeptide,Advances in Peptide Hormone Research, Raven, New York.Google Scholar
  233. Said S. I. (1984) Isolation, localization and characterization of gastrointestinal peptides.Peptides 5, 143–150.PubMedGoogle Scholar
  234. Said S. I. (1986) Vasoactive intestinal peptide.J. Endocrinol. Invest. 9, 191–200.PubMedGoogle Scholar
  235. Said S. I. and Mutt V. (1988) Vasoactive intestinal peptide and related peptides.Ann. NY Acad. Sci.,527.Google Scholar
  236. Samson W. K., Bianchi R., Mogg R. J., Rivier J., Vale W., and Melin P. (1989) Oxytocin mediates the hypothalamic action of vasoactive intestinal peptide to stimulate prolactin secretion.Endocrinol. 124, 812–819.Google Scholar
  237. Schmid R., Schusdziarra V., and Classen M. (1988) Modulatory effect of glucose on VIP-induced gastric somatostatin release.Am. J. Physiol. 254, E756–759.PubMedGoogle Scholar
  238. Schwartz J. P., Mocchetti I., Giorgi O., and Quach T. T. (1984) Transcriptional regulation of proenkephalin mRNA expression in striatum and adrenal medulla.J. Cell. Biochem. 8B, 110.Google Scholar
  239. Seylanz J., Hara H., Pinard E., Mraovitch S., and MacKenzie E. T. (1988) Effect of stimulation of the sphenopalatine ganglion on cortical blood flow in the rat.J. Cereb. Blood Flow Metab. 8, 875–878.Google Scholar
  240. Shaffer M. M. and Moody T. W. (1986) Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide.Peptides 7, 283–288.PubMedGoogle Scholar
  241. Shimatsu A., Kato Y., Matsushita N., Katakami H., Yanaihara N., and Imura H. (1982) Stimulation by serotonin of vasoactive intestinal polypeptide release into rat hypophysial portal blood.Endocrinol. 111, 338–340.Google Scholar
  242. Sibony P. A., Walcott B., McKeon C., and Jakobiec F. A. (1988) Vasoactive intestinal polypeptide and the innervation of the human lacrimal gland.Arch. Ophthalmol. 106, 1085–1088.PubMedGoogle Scholar
  243. Silva C. M., Tully D. B., Petch L. A., Jewell C. M., and Cidlowski J. A. (1987) Application of a protein-blotting procedure to the study of human glucocorticoid receptor interactions with DNA.Proc. Natl. Acad. Sci. USA 84, 1744–1748.PubMedGoogle Scholar
  244. Silver R., Witkovsky P., Horvath P., Alones V., and Barnstable C. J. (1988) Coexpression of opsinand VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain.Cell Tissue Res. 253, 189–198.PubMedGoogle Scholar
  245. Simonosits A., Tjórnhammar M. L., Kalman M., Cserpan I., Gafvelin G., and Bartfai T. (1988) Synthesis, cloning and expression in Escherichia coli of artificial genes coding for biologically active elongated precursors of the vasoactive intestinal polypeptide.Eur. J. Biochem. 178, 343–350.Google Scholar
  246. Singh H., Kumar A., Townsend C. M., Samad Z., and Singh P. (1988) A synthetic peptide, L-8-K, and its antibody both inhibit the specific binding of vasoactive intestinal peptide to hamster pancreatic cancer cells.Ann. NY Acad. Sci. 527, 679–681.Google Scholar
  247. Southern E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98, 503–517.PubMedGoogle Scholar
  248. Speigel A. M. (1987) Signal transduction by guanine binding proteins.Mol. Cell. Endocrinol. 49, 1–16.Google Scholar
  249. Spokes R. A., Yiangou Y., Chrysanthou B. J., Bowles M. P., and Bloom S. R. (1989) Effects of preprovasoactive intestinal polypeptide-derived peptides on net fluid flux in small intestine of anesthetized rats.Gastroenterol. 96, 327–330.Google Scholar
  250. Stanisz A. M., Befus D., and Bienenstock J. (1986) Differential effects of vasoactive intestinal peptide, substance P and somatostatin on immuno-globulin synthesis and proliferation by lymphocytes from Peyer’s patches, mesenteric lymph nodes and spleen.J. Immunol. 136, 152–156.PubMedGoogle Scholar
  251. Staun-Olsen P., Fahrenkrug J., Gammeltoft S., Ottesen B., and Schousboe A. (1985) Development of binding sites for vasoactive intestinal polypeptide in mouse cerebral cortex and cultured cortical neurons.Int. J. Dev. Neurosci. 3, 609–616.Google Scholar
  252. Steiner D. F., Quinn P. S., Chan S. J., Marsh J., and Tager H. S. (1980) Proceedings mechanisms in the biosynthesis of proteins.Ann. NY Acad. Sci. 343, 1–16.PubMedGoogle Scholar
  253. Stevens L. M. and Landis S. C. (1988) Developmental interactions between sweat glands and the sympathetic neurons which innervate them: Effects of delayed innervation on neurotransmitter plasticity and gland maturation.Dev. Biol. 130, 703–720.PubMedGoogle Scholar
  254. Stone R. A., Laties A. M., Raviola E., and Wiesel T. N. (1988) Increase in retinal vasoactive polypeptide after eyelid fusion in primates.Proc. Natl. Acad. Sci. USA 85, 257–260.PubMedGoogle Scholar
  255. Suzuki N., Hardebo J. E., and Owman C. (1988) Origins and pathways of cerebrovascular vasoactive intestinal polypeptide-positive nerves in rat.J. Cereb. Blood Flow Metab. 8, 697–712.PubMedGoogle Scholar
  256. Svoboda M., De Neef P., Tastenoy M., and Christophe J. (1988) Molecular characteristics and evidence for internalization of vasoactive intestinal peptide (VIP) receptors in the tumoral rat-pancreatic acinar cell line AR 4-2 J.Eur. J. Biochem. 176, 707–713.PubMedGoogle Scholar
  257. Tapia-Arancibia L. and Reichlin S. (1985) Vasoactive intestinal peptide and PHI stimulate somatostatin release from rat cerebral cortical—diencephalic cells in dispersed culture.Brain Res. 336, 67–72.PubMedGoogle Scholar
  258. Tapia-Arancibia L., Pares-Herbute N., Astier H., Reichlin S., and Nathanson J. (1988) Adenylate cyclase activation is not sufficient to stimulate somatostatin release from dispersed cerebral cortical and diencephalic cells in glia-free cultures.Brain Res. 450, 101–110.PubMedGoogle Scholar
  259. Tatemoto K. and Mutt V. (1980) Isolation of two novel candidate hormones using a chemical method for finding naturally occurring peptides.Nature 285, 417, 418.PubMedGoogle Scholar
  260. Taylor D. and Pert C. B. (1979) Vasoactive intestinal polypeptide: Specific binding to rat brain membranes.Proc. Natl. Acad. Sci. USA 76, 660–664.PubMedGoogle Scholar
  261. Thomas G. B., Cummins J. T., Griffin N., and Clarke I. J. (1988) Effect and site of action of hypothalamic neuropeptides on prolactin release in sheep.Neuroendocrinol. 48, 252–257.Google Scholar
  262. Thompson D. C., Altiere R. J., and Diamond L. (1988) The effects of antagonists of vasoactive intestinal peptide on nonadrenergic noncholinergic inhibitory responses in feline airways.Peptides 9, 443–447.PubMedGoogle Scholar
  263. Tornell J., Carlsson B., and Hillensjo, T. (1988) Vasoactive intestinal peptide stimulates oocyte maturation, steroidogenesis, and cyclic adenosine 3′,5′-monophosphate production in isolated preovulatory rat follicles.Biol. Reprod. 39, 213–220.PubMedGoogle Scholar
  264. Towbin H., Staehelin T., and Gordun J. (1979) Electrophoretic transfer of protein’s from polyacrylamide gels to nitrocellulose sheets: Procedure and some application.Proc. Natl. Acad. Sci. USA 76, 4350–4354.PubMedGoogle Scholar
  265. Tricoli J. V., Bell G. I., and Shows T. B. (1984) The human glucagon gene is located on chromosome 2.Diabetes 33, 200–202.PubMedGoogle Scholar
  266. Tsukada T., Fink J. S., Mandel G., and Goodman R. H. (1987) Identification of a region in the human vasoactive intestinal polypeptide gene responsible for regulation by cyclic AMP.J. Biol. Chem. 262, 8743–8747.PubMedGoogle Scholar
  267. Tsukada T., Horovitch S. J., Moutminy M. R., Mandel G., and Goodman R. H. (1985) Structure of the human vasoactive intestinal polypeptide gene.DNA 4, 293–300.PubMedGoogle Scholar
  268. Turner J. T., Jones S. B., and Bylund D. B. (1986) A fragment of vasoactive intestinal peptide, VIP (10–28), is an antagonist of VIP in the colon carcinoma cell line, HT29.Peptides 7, 849–854.PubMedGoogle Scholar
  269. Turner J. T., Bollinger D. W., and Toews M. L. (1988) Vasoactive intestinal peptide receptor/adenylate cyclase system: Differences between agonist- and protein kinase C-mediated desensitization and further evidence for receptor internalization.J. Pharmacol. Exp. Ther. 247, 417–423.PubMedGoogle Scholar
  270. Uemura Y., Sugimoto T., Kikuchi H., and Mizuno N. (1988) Possible origins of cerebrovascular nerve fibers showing vasoactive intestinal polypeptide-like immunoreactivity: An immunohistochemical study in the dog.Brain Res. 448, 98–105.PubMedGoogle Scholar
  271. Van den Pol A. N. and Powley T. (1979) A fine-grained anatomical analysis of the role of the rat suprachiasmatic nucleus in circadian rhythms of feeding and drinking.Brain Res. 160, 307–326.PubMedGoogle Scholar
  272. Van den Pol A. N. and Tsujimoto K. L. (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus: Immunocytochemical analysis of 25 neuronal antigens.Neuroscience 15, 1049–1086.PubMedGoogle Scholar
  273. Van den Pol A. N., and Gorcs T. (1986) Synaptic relationships between neurons containing vasopressin, gastrin-releasing peptide, vasoactive intestinal polypeptide, and glutamate decarboxylase immunoreactivity in the suprachiasmatic nucleus: Dual ultrastructural immunocytochemistry with gold-substituted silver peroxidase.J. Comp. Neurol. 252, 507–521.PubMedGoogle Scholar
  274. Venugopalan C. S., Holmes E., and Pillai S. R. (1989) Blockade of NANC inhibitory tracheal response by peptide T.FASEB J. 3, A287.Google Scholar
  275. Vincent S. R. and Reiner P. B. (1988) A population of very small striatal neurons in the cat displays vasoactive intestinal polypeptide immunoreactivity.Neurosci. Lett. 89, 277–282.PubMedGoogle Scholar
  276. Waelbroeck M., Robberecht P., Coy D. H., Camus J. C., Deneef P., and Christophe J. (1985) Interaction of growth hormone-releasing factor (GRF) and 14 GRF analogs with vasoactive intestinal peptide (VIP) receptors of rat pancreas. Discovery of (N-Ac-Tyr1,D-Phe2)-GRF(1–29)—NH2 as a VIP antagonist.Endocrinol. 116, 2643–2649.Google Scholar
  277. Wang Y.-Y. and Aghajanian G. K. (1988) VIP excitation of locus coeruleus neurons: Evidence for a G-protein-mediated inward current.Soc. Neurosci. Abs. 14, 147 (Abs. 59.9).Google Scholar
  278. Waschek J. A. and Eiden L. E. (1988) Calcium requirements for barium stimulation of enkephalin and vasoactive intestinal biosynthesis in adrenomedullary chromaffin cells.Neuropeptides 11, 39–45.PubMedGoogle Scholar
  279. Waschek J. A., Hsu C.-M., and Eiden L. E. (1988) Lineage-specific regulation of the vasoactive intestinal peptide gene in neuroblastoma cells is conferred by 5.2 kilobases of 5′-flanking sequence.Proc. Natl. Acad. Sci. USA 85, 9547–9551.PubMedGoogle Scholar
  280. Wattchow D. A., Furness J. B., and Costa M. (1988) Distribution and coexistence of peptides in nerve fibers of the external muscle of the human gastrointestinal tract.Gastroenterol. 95, 32–41.Google Scholar
  281. Watts A. G. and Swanson L. W. (1987) Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunocytochemistry in the rat.J. Comp. Neurol. 258, 230–252.PubMedGoogle Scholar
  282. Weinstein J., Pope M., Schmidt R., and Seroussi R. (1988) Neuropharmacologic effects of vibration on the dorsal root ganglion. An animal model.Spine 13, 521–525.PubMedGoogle Scholar
  283. Werner H., Koch Y., Fridkin M., Fahrenkrug J., and Gozes I. (1985) Detection of elevated amounts of VIP in milk.Biochem. Biophys. Res. Commun. 136, 228–232.Google Scholar
  284. Werner H., Koch Y., Baldino F., Jr., and Gozes I. (1988) Estrogen regulation of somatostatin mRNA in the rat hypothalamus.J. Biol. Chem. 263, 7666–7671.PubMedGoogle Scholar
  285. White J. D. and Gall C. M. (1987) Differential regulation of neuropeptide and proto-oncogene mRNA content in the hippocampus following recurrent seizures.Mol. Brain Res. 3, 21–29.Google Scholar
  286. Wiik P. (1988) Homologous regulation of adenylate cyclase-coupled receptors for vasoactive intestinal peptide (VIP) on human mononuclear leukocytes.Reg. Pept. 20, 323–333.Google Scholar
  287. Wynick D., Williams S. J., and Bloom S. R. (1988) Symptomatic secondary hormone syndromes in patients with established malignant pancreatic endocrine tumors.N. Engl. J. Med. 319, 605–607.PubMedGoogle Scholar
  288. Yada T. and Okada Y. (1984) Electrical activity of an intestinal epithelial cell line; hyperpolarizing responses to intestinal secretagogues.J. Membrane Biol. 77, 33–44.Google Scholar
  289. Yaksh T. L., Michener S. R., Bailey J. E., Harty G. J., and Lucas D. L. (1988) Survey of distribution of substance P, vasoactive intestinal polypeptide, cholecystokinin, neurotensin, Met-enkephalin, bombesin and PHI in the spinal cord of cat, dog, sloth and monkey.Peptides 9, 357–372.PubMedGoogle Scholar
  290. Yamagami T., Ohsawa K., Nishizawa M., Inoue C., Gotoh E., Yanaihara N., Yamamoto H., and Okamoto H. (1988) Complete nucleotide sequence of human vasoactive intestinal peptide/PHM-27 gene and its inducible promoter.Ann NY Acad. Sci. 527, 87–102.PubMedGoogle Scholar
  291. Yu G., Grant S., and Glazer R. I. (1988) Association of p93c-fes tyrosine protein kinase with granulocytic/monocytic differentiation and resistance to differentiating agents in HL-60 leukemia cells.Mol. Pharmacol. 33, 384–388.PubMedGoogle Scholar
  292. Yuwiler A. and Wetterberg L. (1989) Peptide T does not affect induction of pinealN-acetyltransferase by vasoactive intestinal peptide.Regul. Pept. 25, 69–73.PubMedGoogle Scholar
  293. Zurier R. B., Kozma M., Sinnett-Smith J., and Rozengurt E. (1988) Vasoactive intestinal peptide synergistically stimulate DNA synthesis in mouse 3T3 cells: Role of cAMP, Ca2+ and protein kinase C.Exp. Cell Res. 176, 155–161.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • Illana Gozes
    • 1
  • Douglas E. Brenneman
    • 1
  1. 1.Laboratory of Molecular Genetics and Developmental Neurobiology, National Institute for Child Health and Human DevelopmentNational Institutes of HealthBethesda

Personalised recommendations