Endocrine Pathology

, Volume 7, Issue 3, pp 173–201 | Cite as

Pulmonary neuroendocrine cells and lung development

  • Mary E. Sunday


Pulmonary neuroendocrine cells produce bioactive peptides such as gastrin-releasing peptide (GRP) at high levels in developing fetal lung. The role of GRP and other peptides in promoting branching morphogenesis, cell proliferation, and cell differentiation during lung organogenesis is reviewed. Possible roles for bioactive peptides derived from these cells in the pathophysiology of perinatal lung disorders are discussed.

Key Words

Growth factors cell differentiation paracrine effects fetal lung bombesin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sorokin SP, Hoyt RF. Neuroepithelial bodies and solitary small-granule cells. In: Massaro D, ed. Lung cell biology (Lung biology in health and disease, vol 41). New York: Dekker, 1989; 191–344.Google Scholar
  2. 2.
    Cutz E, Gillan JE, Perrin DG. Pulmonary neuroendocrine cell system: an overview of cell biology and pathology with emphasis on pediatric lung disease. Perspect Pediatr Pathol 18:32–70, 1995.Google Scholar
  3. 3.
    Birrer MJ, Minna JD. Molecular genetics of lung cancer. Sem Oncol 15:226–235, 1990.Google Scholar
  4. 4.
    Warren WH, Memoli VA, Kittle CF, Jensik RJ, Faber LP, Gould VE. The biological implications of bronchial tumors. J Thorac Cardiovasc Surg 87:274–282, 1984.PubMedGoogle Scholar
  5. 5.
    Netter FH. The CIBA collection of medical illustrations, 7th ed., Summit, NJ: Ciba, 1988.Google Scholar
  6. 6.
    Malchoff CD, Orth DN, Abboud C, Carney JA, Pairolero PC, Carey RM. Ectopic ACTH syndrome caused by a bronchial carcinoid tumor responsive to dexamethasone, metyrapone, and corticotropin-releasing factor. Am J Med 84:760–764, 1988.PubMedCrossRefGoogle Scholar
  7. 7.
    Howlett TA, Hale AC, Price J, Doniach I, Rees LH, Wass JAH, Besser GM. Pituitary ACTH-dependent Cushing’s syndrome due to ectopic production of a bombesin-like peptide by a medullary carcinoma of the thyroid. Clin Endo 22:91–96, 1985.Google Scholar
  8. 8.
    Ten Have-Opbroek AAW. Lung development in the mouse embryo. Exp Lung Res 17:111–130, 1991.PubMedGoogle Scholar
  9. 9.
    Gross I, Wilson CM. Fetal rat lung maturation: initiation and modulation. J Appl Physiol: Respir Environ Exerc Physiol 55:1725–1732, 1983.Google Scholar
  10. 10.
    Adamson IYR, King GM. Epithelial-interstitial cell interactions in fetal rat lung development accelerated by steroids. Lab Invest 55:145–154, 1986.PubMedGoogle Scholar
  11. 11.
    Tanswell AK, Joneja MG, Vreeken E, Lindsay J. Differentiation-arrested rat fetal lung in primary monolayer cell culture II. Dexamethasone, triiodothyronine, and insulin effects on different gestational age cultures. Exp Lung Res 5:49–60, 1983.PubMedGoogle Scholar
  12. 12.
    Gross I, Wilson CM, Floros J, Dynia DW. Initiation of fetal rat lung phospholipid and surfactant-associated protein A mRNA synthesis. Pediatr Res 25:239–244, 1989.PubMedCrossRefGoogle Scholar
  13. 13.
    Post M, Floros J, Smith BT. Inhibition of lung maturation by monoclonal antibodies against fibroblast-pneumonocyte factor. Nature 308:284–286. 1984.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith BT. Lung maturation in the fetal rat: acceleration by injection of fibroblast-pneumonocyte factor. Science 204:1094,1095, 1979.Google Scholar
  15. 15.
    Phelps DS, Floros J. Localization of pulmonary surfactant proteins using immunohistochemistry and tissue in situ hybridization. Exp Lung Res 17:985–995, 1991.PubMedGoogle Scholar
  16. 16.
    Caniggia I, Tseu I, Han RNN, Smith BT, Tanswell K, Post M. Spatial and temporal differences in fibroblast behavior in fetal rat lung. Am J Physiol 261:L424-L433, 1991.PubMedGoogle Scholar
  17. 17.
    Gross I. Regulation of fetal lung maturation. Am J Physiol 259:L337-L344, 1990.PubMedGoogle Scholar
  18. 18.
    Ballard PL. Hormonal regulation of pulmonary surfactant. Endocrin Rev 10:165–181, 1989.Google Scholar
  19. 19.
    King RJ, Jones MB, Minoo P. Regulation of lung cell proliferation by polypeptide growth factors. Am J Physiol 257:L23-L38, 1989.PubMedGoogle Scholar
  20. 20.
    Stahlman MT, Orth DN, Gray ME. Immunocytochemical localization of epidermal growth factor in the developing human respiratory system and in acute and chronic lung disease in the neonate. Lab Invest 60:539–547, 1989.PubMedGoogle Scholar
  21. 21.
    Johnson MD, Gray ME, Carpenter G, Pepinsky RB, Stahlman MT. Ontogeny of epidermal growth factor receptor and lipocortin-1 in fetal and neonatal human lungs. Hum Pathol 21:182–191, 1990.PubMedCrossRefGoogle Scholar
  22. 22.
    Gross I, Rooney SA, Smart DA, Warshaw JB, Sissom JF, Hoath SB, Dynia DW. Influence of epidermal growth factor on fetal rat lung development in vitro. Pediatr Res 20:473–477, 1986.PubMedCrossRefGoogle Scholar
  23. 23.
    Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ. Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 243:1074–1076, 1989.PubMedCrossRefGoogle Scholar
  24. 24.
    Carpenter G, Zendegui JG. Epidermal growth factor, its receptor, and related proteins. Exp Cell Res 164:1–10, 1986.PubMedCrossRefGoogle Scholar
  25. 25.
    Stiles AD, D’Ercole AJ. The insulin-like growth factors and the lung. Am J Respir Cell Mol Biol 3:93–100, 1990.PubMedGoogle Scholar
  26. 26.
    Han RNN, Mawdsley C, Souza P, Tanswell AK, Post M. Platelet-derived growth factors and growth-related genes in rat lung. III. Immunolocalization during fetal development. Pediatr Res 31:323–329, 1992.PubMedGoogle Scholar
  27. 27.
    Peters K, Werner S, Liao X, Wert S, Whitsett J, Williams L. Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. EMBO J 13:3296–3301, 1994.PubMedGoogle Scholar
  28. 28.
    Han RNN, Liu J, Tanswell AK, Post M. Expression of basic fibroblast growth factor and receptor: immunolocalization studies in developing rat fetal lung. Pediatr Res 31:435–440, 1992.PubMedGoogle Scholar
  29. 29.
    Whitsett JA, Weaver TE, Lieberman MA, Clark JC, Daugherty C. Differential effects of epidermal growth factor and transforming growth factor-beta on synthesis of Mr=35,000 surfactant associated protein in fetal lung. J Biol Chem 262:7908–7913, 1987.PubMedGoogle Scholar
  30. 30.
    Johnson DE. Pulmonary neuroendocrine cells. In: Farmer SG, Hay DWP, eds. The airway epithelium. New York: Dekker, 1991; 335–381.Google Scholar
  31. 31.
    Scheuermann DW. Neuroendocrine cells. In: Crystal RG, West JB, eds. The lung. New York: Raven, 1991; 289–300.Google Scholar
  32. 32.
    Barnes PJ, Baraniuk JN, Belvisi MG. State of the art: neuropeptides in the respiratory tract. Part I. Am Rev Respir Dis 144:1187–1198, 1991.PubMedGoogle Scholar
  33. 33.
    Laitinen LA, Laitinen A. Neural system. In: Crystal RG, West JB, Barnes PJ, Cherniack NS, Weibel ER, eds. The lung. New York: Raven, 1991; 759–766.Google Scholar
  34. 34.
    Barnes PJ, Baraniuk JN, Belvisi MG. State of the art: neuropeptides in the respiratory tract. Part II. Am Rev Respir Dis 144:1391–1399, 1991.PubMedGoogle Scholar
  35. 35.
    Barnes PJ. Neural control of airway smooth muscle. In: Crystal RG, West JB. The lung. New York: Raven, 1991; 903–916.Google Scholar
  36. 36.
    Springall DR, Bloom SR, Polak JM. Neural, endocrine, and endothelial regulatory peptides. In: Crystal RG, West JB, Barnes PJ, Cherniak NS, Weibel ER, eds. The lung: scientific foundations. New York: Raven, 1991; 69–90.Google Scholar
  37. 37.
    Feyrter F: Ueber diffuse endokrine epitheliale Organe. Leipzig, Germany: Barth, 1938.Google Scholar
  38. 38.
    Feyrter F. Zur pathologie des argyrophilen helle-zellen-organes im bronchialbaum des menschen. Virchows Archiv 325:723–732, 1954.PubMedCrossRefGoogle Scholar
  39. 39.
    Lauweryns JM, Peuskens JC. Neuro-epithelial bodies (neuroreceptor or secretory organs?) in human infant bronchial and bronchiolar epithelium. Anat Rec 172:471–482, 1971.CrossRefGoogle Scholar
  40. 40.
    Lauweryns JM, Cokelaere M, Theunynck P. Serotonin producing neuroepithelial bodies in rabbit respiratory mucosa. Science 180:410–414, 1973.PubMedCrossRefGoogle Scholar
  41. 41.
    Pearse AGE. Common cytochemical and ultrastructural characteristics of cells produc-ing polypeptide hormones (the apud series) and their relevance to thyroid and ultimobranchial C cells and calcitonin. Proc Roy Soc B 170:71–80, 1968.Google Scholar
  42. 42.
    Pearse AGE. The cytochemistry and ultrastructure of polypeptide hormone producing cells of the APUD series and the embryologic physiologic and pathologic implications of the concept. Histochem Cytochem 17:303, 1969.Google Scholar
  43. 43.
    Wharton J, Polak JM, Bloom SR, Ghatei MA, Solcia E, Brown MR, Pearse AGE. Bombesin-like immunoreactivity in the lung. Nature 273:769, 770, 1978.PubMedCrossRefGoogle Scholar
  44. 44.
    Sorokin SP, Hoyt RF, Pearsall AD. Comparative biology of small granule cells and neuroepithelial bodies in the respiratory system. Am Rev Respir Dis 128:S26-S31, 1983.PubMedGoogle Scholar
  45. 45.
    Cutz E, Gillan JE, Track NS. Pulmonary endocrine cells in the developing human lung and during neonatal adaption. In: Becker KL, Gazdar AF, eds. The endocrine lung in health and disease. Philadelphia: Saunders, 1984; 210–231.Google Scholar
  46. 46.
    Polak JM, Becker KL, Cutz E, Gail DB, Goniakowska-Witalinska L, Gosney JR, Lauweryns JM, Linnoila I, McDowell EM, Miller YE, Scheuermann DW, Springall DR, Sunday ME, Zaccone G. Lung endocrine cell markers, peptides, and amines. Anat Rec 236:169–171, 1993.PubMedCrossRefGoogle Scholar
  47. 47.
    Sunday ME, Kaplan LM, Motoyama E, Chin WW, Spindel ER. Biology of disease: gastrin-releasing peptide (mammalian bombesin) gene expression in health and disease. Lab Invest 59:5–24, 1988.PubMedGoogle Scholar
  48. 48.
    Stahlman MT, Kasselberg AG, Orth DN, Gray ME. Ontogeny of neuroendocrine cells in human fetal lung: II. An immunohistochemical study. Lab Invest 52:52–60, 1985.PubMedGoogle Scholar
  49. 49.
    Wang YY, Cutz E. Localization of cholecystokinin-like peptide in neuroendocrine cells of mammalian lungs: a light and electron microscopic immunohistochemical study. Anat Rec 236: 198–205, 1993.PubMedCrossRefGoogle Scholar
  50. 50.
    Giaid A, Polak JM, Gaitonde V, Hamid QA, Moscoso G, Legon S, Uwanogho D, Roncalli M, Shinmi O, Sawamura T, Kimura S, Yanagisawa M, Masaki T, Springall DR. Distribution of endothelin-like immunoreactivity and mRNA in the developing and adult human lung. Am J Respir Cell Mol Biol 4:50–58, 1991.PubMedGoogle Scholar
  51. 51.
    Fukayama M, Hayashi Y, Shiozawa Y, Furukawa E, Funata N, Koike M. Human chorionic gonadotropin alpha-subunit in endocrine cells of fibrotic and neoplastic lung: its mode of localization and the size profile of granules. Lab Invest 62:444–451, 1990.PubMedGoogle Scholar
  52. 52.
    Fukayama M, Hayashi Y, Koike M, Hajikano H, Endo S, Okumura H. Human chorionic gonadotropin in lung and lung tumors: immunohistochemical study on unbalanced distribution of subunits. Lab Invest 55:433–443, 1986.PubMedGoogle Scholar
  53. 53.
    Tsutsumi Y, Osamura Y, Watanabe K, Yanaihara N. Immunohistochemical studies on gastrin-releasing peptide-and adrenocorticotropic hormone-containing cells in the human lung. Lab Invest 48:623–632, 1983.PubMedGoogle Scholar
  54. 54.
    Osamura RY, Tsutsumi Y, Watanabe K. Light and electron microscopic localization of ACTH and proopiomelanocortin-derived peptides in human development and neoplastic cells. J Histochem Cytochem 32:885–893, 1984.PubMedGoogle Scholar
  55. 55.
    Lauweryns JM, Peuskens JC. Argyrophil (kinin and amine producing?) cells in human infant airway epithelium. Life Sci 8:577–585, 1969.PubMedCrossRefGoogle Scholar
  56. 56.
    Cutz E. Cytomorphology and differentiation of airway epithelium in developing human lung. In: McDowell EM, ed. Lung carcinomas: current problems in tumor pathology. Edinburgh: Churchill Livingstone, 1987; 1–41.Google Scholar
  57. 57.
    Andrew A. Further evidence that enterochromaffin cells are not derived from the neural crest. J Embryol Exp Morphol 31:589–598, 1974.PubMedGoogle Scholar
  58. 58.
    Hoyt RF, McNelly NA, Sorokin SP. Dynamics of neuroepithelial body (NEB) formation in developing hamster lung: light microscopic autoradiography after 3H-thymidine labeling in vivo. Anat Rec 927:340–350, 1990.CrossRefGoogle Scholar
  59. 59.
    Bosman FT, Louwerens JWK. APUD cells in teratomas. Am J Pathol 104:174–180, 1981.PubMedGoogle Scholar
  60. 60.
    O’Rahilly R. The early prenatal development of the human respiratory system. In: Nelson GH, ed. Pulmonary development: transition from intrauterine to extrauterine life. New York: Dekker, 1985; 3–18.Google Scholar
  61. 61.
    Stahlman MT, Gray ME. Ontogeny of neuroendocrine cells in human fetal lung I. An electron microscopic study. Lab Invest 51:449–463, 1984.PubMedGoogle Scholar
  62. 62.
    Hage E. Morphology and histochemistry of the normal and abnormal pulmonary endocrine cell. Endocr Lung Health Dis 10:193–209, 1984.Google Scholar
  63. 63.
    Spindel ER, Sunday ME, Hofler H, Wolfe HJ, Habener JF, Chin WW. Transient elevation of mRNAs encoding gastrin-releasing peptide (GRP), a putative pulmonary growth factor, in human fetal lung. J Clin Invest 80:1172–1179, 1987.PubMedGoogle Scholar
  64. 64.
    Haley KJ, Drazen JM, Osathanondh R, Sunday ME. Comparison of the ontogeny of protein gene product 9.5, chromogranin A and proliferating cell nuclear antigen in human fetal lung. Microscopy Res Techniques 1996, in press.Google Scholar
  65. 65.
    Wuenschell CW, Sunday ME, Singh G, Minoo P, Slavkin HC, Warburton D. Embryonic mouse lung epithelial progenitor cells co-express immunohistochemical markers of diverse mature cell lineages. J Histochem Cytochem 44:113–123, 1996.PubMedGoogle Scholar
  66. 66.
    Li K, Nagalla SR, Spindel ER. A rhesus monkey model to characterize the role of gastrin-releasing peptide (GRP) in lung development. J Clin Invest 94:1605–1615, 1994.PubMedGoogle Scholar
  67. 67.
    Cutz E, Conen PE. Endocrine-like cells in human fetal lungs: an electron microscopic study. Anat Rec 173:115, 1972.PubMedCrossRefGoogle Scholar
  68. 68.
    Watanabe H. Pathological studies of neuroendocrine cells in human embryonic and fetal lung. Acta Pathol Jpn 38:59–74, 1988.PubMedGoogle Scholar
  69. 69.
    McDowell EM, Sorokin SP, Hoyt RF. Ontogeny of endocrine cells in the respiratory system of Syrian golden hamsters. I. Larynx and trachea. Cell Tissue Res 275: 143–156, 1994.PubMedCrossRefGoogle Scholar
  70. 70.
    McDowell EM, Hoyt RF, Sorokin SP. Ontogeny of endocrine cells in the respiratory system of Syrian golden hamsters. II. Intrapulmonary airways and alveoli. Cell Tissue Res 275:157–167, 1994.PubMedCrossRefGoogle Scholar
  71. 71.
    Van Lommel ATL, Lauweryns JM. Ultrastructure and innervation of neuroepithelial bodies in the lungs of newborn cats. Anat Rec 236:181–190, 1993.PubMedCrossRefGoogle Scholar
  72. 72.
    Lauweryns JM, Van Lommel A. The intrapulmonary neuroepithelial bodies after vagotomy: demonstration of their sensory neuroreceptor-like innervation. Experientia 39:1123, 1124, 1983.PubMedCrossRefGoogle Scholar
  73. 73.
    Speirs V, Bienkowski E, Wong V, Cutz E. Paracrine effects of bombesin/gastrin-releasing peptide and other growth factors on pulmonary neuroendocrine cells in vitro. Anat Rec 236:53–61, 1993.PubMedCrossRefGoogle Scholar
  74. 74.
    Cho T, Chan W, Cutz E. Distribution and frequency of neuroepithelial bodies in post-natal rabbit lung: quantitative study with monoclonal antibody against serotonin. Cell Tissue Res 255:353–362, 1989.PubMedCrossRefGoogle Scholar
  75. 75.
    Hage E. Histochemistry and fine structure of endocrine cells in foetal lungs of the rabbit, mouse and Guinea-pig. Cell Tissue Res 149:513–524, 1974.PubMedCrossRefGoogle Scholar
  76. 76.
    Stahlman MT, Jones M, Gray ME, Kasselberg AG, Vaughn WK. Ontogeny of neuroendocrine cells in human fetal lung: III. An electron microscopic immunohistochemical study. Lab Invest 56: 629–641, 1987.PubMedGoogle Scholar
  77. 77.
    Stahlman MT, Gray ME. Colocalization of peptide hormones in neuroendocrine cells of human fetal and newborn lungs: an electron microscopic study. Anat Rec 236:206–212, 1993.PubMedCrossRefGoogle Scholar
  78. 78.
    Lauweryns JM, Cokelaere M. Hypoxia-sensitive neuro-epithelial bodies. Intrapulmonary secretory neuroreceptors, modulated by the CNS. Cell Tissue Res 145:521–540, 1973.Google Scholar
  79. 79.
    Lauweryns JM, Cokelaere M, Deleersynder M, Liebens M. Intrapulmonary neuroepithelial bodies in newborn rabbits. Influence of hypoxia, hyperoxia, hypercapnia, nicotine, reserpine, L-DOPA and 5-HTP. Cell Tissue Res 182:425–440, 1977.PubMedCrossRefGoogle Scholar
  80. 80.
    Fritsch HAR, Van Noorden S, Pearse AGE. Substance P-, neurotensin- and bombesin-like immunoreactivities in the gill epithelium of Ciona intestinalis L. Cell Tissue Res 208:467–473, 1980.PubMedCrossRefGoogle Scholar
  81. 81.
    Youngson C, Nurse C, Yeger H, Cutz E. Oxygen sensing in airway chemoreceptors: demonstration of hypoxia-sensitive K+ current and O2-sensor protein. Nature 365:153–155, 1993.PubMedCrossRefGoogle Scholar
  82. 82.
    Gosney JR. Pulmonary neuroendocrine cells in species at high altitude. Anat Rec 236:105–107, 1993.PubMedCrossRefGoogle Scholar
  83. 83.
    Hernandez-Vasquez A, Will JA, Guay WB. Quantitative characteristics of the Feyrter cells and neuroepithelial bodies of the fetal rabbit lung in normoxia and short term chronic hypoxia. Cell Tissue Res 189:179–186, 1978.PubMedCrossRefGoogle Scholar
  84. 84.
    Pack RJ, Barker S, Howe A. The effect of hypoxia on the number of amine-containing cells in the lung of the adult rat. Eur Respir J 68:121–130, 1986.Google Scholar
  85. 85.
    Springall DR, Collina G, Barer G, Suggett AJ, Bee D, Polak JM. Increased intracellular levels of calcitonin gene-related peptide-like immunoreactivity in pulmonary endocrine cells of hypoxic rats. J Pathol 155:259–267, 1988.PubMedCrossRefGoogle Scholar
  86. 86.
    Keith IM, Will JA. Hypoxia and the neonatal rabbit lung: neuroendocrine cell numbers, 5-HT fluorescence intensity, and the relationship to arterial thickness. Thorax 36:767–773, 1981.PubMedGoogle Scholar
  87. 87.
    Taylor W. Pulmonary argyrophil cells at high altitude. J Pathol 122: 137–144, 1977.PubMedCrossRefGoogle Scholar
  88. 88.
    Gosney JR. Pulmonary endocrine cells in native Peruvian guinea pigs at low and high altitude. J Comp Pathol 102:7–12, 1990.PubMedGoogle Scholar
  89. 89.
    Montuenga LM, Springall DR, Gaer J, Winter RJD, Zhao L, McBride JT, Taylor KM, Barer G, Polak JM. CGRP-immunoreactive endocrine cell proliferation in normal and hypoxic rat lung studied by immunocytochemical detection of incroporation of 5′-bromodeoxyuridine. Cell Tissue Res 268:9–15, 1992.PubMedCrossRefGoogle Scholar
  90. 90.
    Roncalli M, Springall DR, Maggioni M, Moradoghli-Haftvani A, Winter RJD, Zhao L, Coggi G, Polak JM. Early changes in the calcitonin gene-related peptide (CGRP) content of pulmonary endocrine cells concomitant with vascular remodeling in the hypoxic rat. Am J Respir Cell Mol Biol 9:467–474, 1993.PubMedGoogle Scholar
  91. 91.
    Ito T, Ikemi Y, Ohmori K, Kitamura H, Kanisawa M. Airway epithelial cell changes in rats exposed to 0.25 ppm ozone for 20 months. Exp Toxic Pathol 46: 1–6, 1994.Google Scholar
  92. 92.
    Linnoila RI, Nettesheim P, DiAugustine RP. Lung endocrine-like cells in hamsters treated with diethylnitrosamine: alterations in vivo and in cell culture. Proc Natl Acad Sci USA 78:5170–5174, 1981.PubMedCrossRefGoogle Scholar
  93. 93.
    Sunday ME, Willett CG. Induction and spontaneous regression of intense pulmonary neuroendocrine cell differentiation in a model of preneoplastic lung injury. Cancer Res 52(Suppl):2677s-2686s, 1992.PubMedGoogle Scholar
  94. 94.
    Nylen ES, Becker KL. Chronic hyperoxia and hamster pulmonary neuroendocrine cell bombesin and calcitonin. Anat Rec 236: 248–252, 1993.PubMedCrossRefGoogle Scholar
  95. 95.
    Nylen ES, Becker KL, Snider RH, Tabassian AR, Cassidy MM, Linnoila RI. Cholinergicnicotinic control of growth and secretion of cultured pulmonary neuroendocrine cells. Anat Rec 236:129–135, 1993.PubMedCrossRefGoogle Scholar
  96. 96.
    Sunday ME, Willett CG, Patidar K, Graham SA, Kelly D. Modulation of oncogene and tumor suppressor gene expression in a hamster model of chronic lung injury with varying degrees of pulmonary neuroendocrine cell hyperplasia. Lab Invest 70:875–888, 1994.PubMedGoogle Scholar
  97. 97.
    Oreffo VIC, Lin HW, Gumerlock PH, Kraegel SA, Witschi HP. Mutational analysis of a dominant oncogene (c-Ki-ras-2) and a tumor suppressor gene (p53) in hamster lung tumorigenesis. Mol Carcinog 6:199–202, 1992.PubMedCrossRefGoogle Scholar
  98. 98.
    Becker KL, O’Neill WJ, Snider RH, Nylen ES, Moore CF, Jeng J, Silva OL, Lewis MS, Jordan MH. Hypercalcitoninemia in inhalation bum injury: a response of the pulmonary neuroendocrine cell? Anat Rec 236: 136–138, 1993.PubMedCrossRefGoogle Scholar
  99. 99.
    Sorokin SP, Ebina M, Hoyt RF. Development of PGP 9.5- and calcitonin gene-related peptide-like immunoreactivity in organ cultured fetal rat lungs. Anat Rec 236:213–225, 1993.PubMedCrossRefGoogle Scholar
  100. 100.
    Ebina M, Hoyt RF, Sorokin SP, McNelly NA. Calcium and ionophore A23187 lower calcitonin gene-related peptide-like immunoreactivity in endocrine cells of organ cultured fetal rat lungs. Anat Rec 236:226–230, 1993.PubMedCrossRefGoogle Scholar
  101. 101.
    Speirs V, Cutz E. An overview of culture and isolation methods suitable for in vitro studies on pulmonary neuroendocrine cells. Anat Rec 236:35–40, 1993.PubMedCrossRefGoogle Scholar
  102. 102.
    Cutz E, Speirs V, Yeger H, Newman C, Wang D, Perrin DG. Cell biology of pulmonary neuroepithelial bodies—validation of an in vitro model. I. Effects of hypoxia and Ca2+ ionophore on serotonin content and exocytosis of dense core vesicles. Anat Rec 236:41–52, 1993.PubMedCrossRefGoogle Scholar
  103. 103.
    Linnoila RI, Gazdar AF, Funa K, Becker KL. Long-term selective culture of hamster pulmonary endocrine cells. Anat Rec 236:231–240, 1993.PubMedCrossRefGoogle Scholar
  104. 104.
    Shipp MA, Tarr GE, Chen C-Y, Switzer SN, Hersh LB, Stein H, Sunday ME, Reinherz EL. CD10/NEP hydrolyzes bombesin-like peptides and regulates the growth of small cell carcinomas of the lung. Proc Natl Acad Sci USA 88:10,662–10,666, 1991.CrossRefGoogle Scholar
  105. 105.
    Bunnett NW, Kobayashi R, Orloff MS, Reeve JR, Turner AJ, Walsh JH. Catabolism of gastrin releasing peptide and substance P by gastric membrane-bound peptidases. Peptides 6:277–283, 1985.PubMedCrossRefGoogle Scholar
  106. 106.
    Coy DH, Taylor JE, Jiang N-Y, Kim SH, Wang L-H, Huang S, Moreau JP, Gardner JD, Jensen RT. Short-chain pseudopeptide bombesin receptor antagonists with enhanced binding affinities for pancreatic acinar and Swiss 3T3 cells display strong antimitotic activity. J Biol Chem 264:14,691–14,697, 1989.Google Scholar
  107. 107.
    Siegfried JM, Guentert PJ, Gaither AL. Effects of bombesin and gastrin-releasing peptide on human bronchial epithelial cells from a series of donors: individual variation and modulation by bombesin analogs. Anat Rec 236:241–247, 1993.PubMedCrossRefGoogle Scholar
  108. 108.
    Siegried JM, Han YH, DeMichele MA, Hunt JD, Gaither AL, Cuttitta F. Production of gastrin-releasing peptide by a non-small cell lung carcinoma cell line adapted to serum-free and growth factor-free conditions. J Biol Chem 269:8596–8603, 1994.Google Scholar
  109. 109.
    Ganju RK, Sunday ME, Tsarwhas DG, Card A, Shipp MA. The expression of CD10/NEP in non-small cell lung carcinomas: relationship to cellular proliferation. J Clin Invest 94:1784–1791, 1994.PubMedGoogle Scholar
  110. 110.
    Erspamer V. Amphibian skin peptides in mammals—looking ahead. Trends Neurosci 6:200, 201, 1983.CrossRefGoogle Scholar
  111. 111.
    McDonald TJ, Jomvall H, Nilsson G, Vagne M, Ghatei M, Bloom SR, Mutt V. Characterization of a gastrin-releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 90:227–233, 1979.PubMedCrossRefGoogle Scholar
  112. 112.
    Spindel ER, Chin WW, Price J, Rees LH, Besser GM, Habener JF. Cloning and characterization of cDNAs encoding human gastrin-releasing peptide. Proc Natl Acad Sci USA 81:5699–5703, 1984.PubMedCrossRefGoogle Scholar
  113. 113.
    Gillan JE, Cutz E. Abnormal pulmonary bombesin immunoreactive cells in Wilson-Mikity syndrome and bronchopulmonary dysplasia. Pediatr Pathol 13:165–180, 1993.PubMedGoogle Scholar
  114. 114.
    Gillan JE, Curran C, O’Reilly E. Abnormal patterns of pulmonary neuroendocrine cells in victims of sudden infant death syndrome. Pediatrics 84:828–834, 1989.PubMedGoogle Scholar
  115. 115.
    Cuttitta F, Fedorko, J, Gu J, Lebacqverheyden A, Linnoila I, Battey JF. Gastrin-releasing peptide gene-associated peptides are expressed in normal human fetal lung and small cell lung cancer: a novel peptide family found in man. J Clin Endocrinol Metab 67:576–583, 1988.PubMedGoogle Scholar
  116. 116.
    Masui A, Kato N, Itoshima T, Tsunashima K, Nakajima T, Yanaihara N. Scratching behavior induced by bombesin-related peptides. Comparison of bombesin, gastrin-releasing peptide and phyllolitorins. Eur J Pharmacol 238:297–301, 1993.PubMedCrossRefGoogle Scholar
  117. 117.
    Malendowicz LK, Lesniewska B, Baranowska B, Nowak M, Majchrzak M. Effect of bombesin on the structure and function of the rat adrenal cortex. Res Exp Med 191:121–128, 1991.CrossRefGoogle Scholar
  118. 118.
    Tomquist K. 1,25-Dihydroxycholecalciferol enhances both the bombesin-induced transient in intracellular free Ca2+ and the bombesin-induced secretion of prolactin in GH4C1 pituitary cells. Endocrinology 128:2175–2182, 1991.Google Scholar
  119. 119.
    Nealon WH, Beauchamp RD, Townsend CM, Thompson JC. Role of cholecystokinin in canine pancreatic exocrine response to bombesin stimulation. Am J Surg 153:96–101, 1987.PubMedCrossRefGoogle Scholar
  120. 120.
    Flowe KM, Welling TH, Mulholland MW. Gastrin-releasing peptide stimulation of amylase release from rat pancreatic lobules involves intrapancreatic neurons. Pancreas 9:513–517, 1994.PubMedCrossRefGoogle Scholar
  121. 121.
    Jansen JB, deJong AJ, Singer MV, Niebel W, Rovati LC, Lamers CB. Role of cholecystokinin in bombesin- and meal-stimulated pancreatic polypeptide secretion in dogs. Dig Dis Sci 35:1073–1077, 1990.PubMedCrossRefGoogle Scholar
  122. 122.
    Represa JJ, Miner C, Barbosa E, Giraldez F. Bombesin and other growth factors activate cell proliferation in chick embryo otic vesicles in culture. Development 102:87–96, 1988.Google Scholar
  123. 123.
    Ahren B. Regulatory peptides in the thyroid gland-a review on their localization and function. Acta Endocrinologica 124:225–232, 1991.PubMedGoogle Scholar
  124. 124.
    Pang XP, Hershman JM. Differential effects of growth factors on thymidine incorporation and iodine uptake in FRTL-5 rat thyroid cells. Proc Soc Exp Biol Med 194: 240–244, 1990.PubMedGoogle Scholar
  125. 125.
    Lewinski A, Sewerynek E, Wajs E, Baranowska B, Zerek-Melen G. Inhibitory effect of bombesin and SMS 201-995 on DNA synthesis in the rat thyroid lobes incubated in vitro. Biochem Biophys Res Comm 178: 520–525, 1991.PubMedCrossRefGoogle Scholar
  126. 126.
    Willey JC, Lechener JF, Harris CC. Bombesin and the C-terminal tetradecapeptide of gastrin-releasing peptide are growth factors for normal human bronchial epithelial cells. Exp Cell Res 153:245–248, 1984.PubMedCrossRefGoogle Scholar
  127. 127.
    Weber S, Zuckerman JE, Bostwick DG, Bensch KG, Sikic BI, Raffin TA. Gastrin releasing peptide is a selective mitogen for small cell lung carcinoma in vitro. J Clin Invest 75:306–309, 1985.PubMedGoogle Scholar
  128. 128.
    Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, Minna JD. Bombesin-like peptides can function as autocrine growth factors in human small cell cancer. Nature 316:823–826, 1985.PubMedCrossRefGoogle Scholar
  129. 129.
    Sunday ME, Hua J, Dai HB, Nusrat A, Torday JS. Bombesin increases fetal lung growth and maturation in utero and in organ culture. Am J Respir Cell Mol Biol 3:199–205, 1990.PubMedGoogle Scholar
  130. 130.
    Sunday ME, Hua J, Reyes B, Masui H, Torday JS. Anti-bombesin antibodies modulate fetal mouse lung growth and maturationin utero and in organ cultures. Anat Rec 236:25–32, 1993.PubMedCrossRefGoogle Scholar
  131. 131.
    Sunday ME, Hua J, Torday J, Reyes B, Shipp MA. CD 10/Neutral endopeptidase 24.11 in developing human fetal lung: patterns of expression and modulation of peptide-mediated proliferation. J Clin Invest 90:2517–2525, 1992.PubMedGoogle Scholar
  132. 132.
    King KA, Hua J, Torday JS, Drazen JM, Graham SA, Shipp MA, Sunday ME. CD 10/Neutral endopeptidase regulates fetal lung growth and maturationin utero. J Clin Invest 91:1969–1973, 1993.PubMedGoogle Scholar
  133. 133.
    Rooney SA. The surfactant system and lung phospholipid biochemistry. Am Rev Respir Dis 131:439–460, 1985.PubMedGoogle Scholar
  134. 134.
    Post M, Barsoumian A, Smith BT. The cellular mechanism of glucocorticoid acceleration of fetal lung maturation: fibroblast-pneumonocyte factor stimulates choline-phosphate cytidylyltransferase activity. J Biol Chem 261:2179–2184, 1986.PubMedGoogle Scholar
  135. 135.
    Post M, Torday JS, Smith BT. Alveolar type II cells isolated from fetal rat lung organotypic cultures synthesize and secrete surfactant-associated phospholipids and respond to fibroblast-pneumonocyte factor. Exp Lung Res 7:53–65, 1984.PubMedGoogle Scholar
  136. 136.
    Fraslon C, Bourbon JR. Comparison of effects of epidermal and insulin-like growth factors, gastrin releasing peptide and retinoic acid on fetal lung cell growth and maturation in vitro. Biochim Biophys Acta 1123: 65–75, 1992.PubMedGoogle Scholar
  137. 137.
    Erdos EG, Skidgel RA. Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J 3:145–151, 1989.PubMedGoogle Scholar
  138. 138.
    LeBien TW, McCormack RT. The common acute lymphoblastic leukemia antigen (CD10)—emancipation from a functional enigma. Blood 73:625–635, 1989.PubMedGoogle Scholar
  139. 139.
    Shipp MA, Stefano GB, Scharrer B, Reinherz EL. CD10 (CALLA, common acute lymphoblastic leukemia antigen)/neutral endopeptidase 24.11 (NEP, “enkephalinase”): molecular structure and role in regulating met-enkephalin mediated inflammatory responses. Adv Neuroimmunol 1:139–149, 1991.CrossRefGoogle Scholar
  140. 140.
    Stimler-Gerard NP. Neutral endopeptidase-like enzyme controls the contractile activity of substance P in guinea pig lung. J Clin Invest 79:1819–1825, 1987.PubMedGoogle Scholar
  141. 141.
    Nadel JA, Borson DB. Modulation of neurogenic inflammation by neutral endopeptidase. Am Rev Respir Dis 143(Suppl):S33-S36, 1991.PubMedGoogle Scholar
  142. 142.
    Chipkin RE, Berger JG, Billard W, Iorio LC, Chapman R, Barnett A. Pharmacology of SCH 34826, an orally active enkephalinase inhibitor analgesic. J Pharmacol Exp Ther 245:829–838, 1988.PubMedGoogle Scholar
  143. 143.
    Miller YE. Pulmonary neuroendocrine cells and lung development: dim outlines emerge. J Clin Invest 91:1861, 1993.PubMedGoogle Scholar
  144. 144.
    Asokananthan N, Cake MH. Stimulation of surfactant lipid secretion from fetal type II pneumocytes by gastrin-releasing peptide. Biochim Biophys Acta, 1996, in press.Google Scholar
  145. 145.
    Rozengurt E. Early signals in the mitogenic response. Science 234:161–166, 1986.PubMedCrossRefGoogle Scholar
  146. 146.
    Wang D, Yeger H, Cutz E Expression of gastrin-releasing peptide receptor gene in developing lung. Am J Respir Cell Mol 14:409–416, 1996.Google Scholar
  147. 147.
    Wada E, Battey J, Wray S. Bombesin receptor gene expression in rat embryos: transient GRP-R gene expression in the posterior pituitary. Mol Cell Neurosci 4:13–24, 1993.CrossRefPubMedGoogle Scholar
  148. 148.
    King KA, Torday JS, Sunday ME. Bombesin and [leu8]phyllolitorin promote fetal mouse lung branching morphogenesis via a specific receptor-mediated mechanism. Proc Natl Acad Sci USA 92:4357–4361, 1995.PubMedCrossRefGoogle Scholar
  149. 149.
    Aguayo SM, Schuyler WE, Murtagh JJ, Roman J. Regulation of lung branching morphogenesis by bombesin-like peptides and neutral endopeptidase. Am J Respir Cell Mol Biol 10:635–642, 1994.PubMedGoogle Scholar
  150. 150.
    McGowan SE. Extracellular matrix and the regulation of lung development and repair. FASEB J 6:2895–2904, 1992.PubMedGoogle Scholar
  151. 151.
    Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25, 1992.PubMedCrossRefGoogle Scholar
  152. 152.
    Bernfield M, Sanderson RD. Syndecan, a developmentally regulated cell surface proteoglycan that binds extracellular matrix and growth factors. Phil Trans R Soc Lond B 327:171–186, 1990.CrossRefGoogle Scholar
  153. 153.
    Warburton D, Seth R, Shum L, Horcher PG, Hall FL, Werb Z, Slavkin HC. Epigenetic role of epidermal growth factor expression and signalling in embryonic mouse lung morphogenesis. Dev Biol 149:123–133, 1992.PubMedCrossRefGoogle Scholar
  154. 154.
    Klagsbrun M, D’Amore PA. Regulators of angiogenesis. Annu Rev Physiol 53:217–239, 1991.PubMedCrossRefGoogle Scholar
  155. 155.
    Sunderkotter C, Goebeler M, Schulze-Osthoff K, Bhardwaj R, Sorg C. Macrophagederived angiogenesis factors. Pharmacol Ther 51:195–216, 1991.PubMedCrossRefGoogle Scholar
  156. 156.
    Warburton D. Epigenetic autocrine and paracrine factors regulating lung morphogenesis. Chest 99 (Suppl): 15S-18S, 1991.PubMedGoogle Scholar
  157. 157.
    Goldin GV, Opperman LA. Induction of supernumerary tracheal buds and the stimulation of DNA synthesis in the embryonic chick lung and trachea by epidermal growth factor. J Embryol Exp Morphol 60:235–243, 1980.PubMedGoogle Scholar
  158. 158.
    Hilfer SR, Rayner RM, Brown JW. Mesenchymal control of branching pattern in the fetal mouse lugn. Tissue Cell 17:523–538, 1985.PubMedCrossRefGoogle Scholar
  159. 159.
    Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67:901–908, 1991.PubMedCrossRefGoogle Scholar
  160. 160.
    Hirai Y, Takebe K, Takashina M, Kobayashi S, Takeichi M. Epimorphin: a mesenchymal protein essential for epithelial morphogenesis. Cell 69:471–481, 1992.PubMedCrossRefGoogle Scholar
  161. 161.
    Infeld MD, Brennan JA, Davis PB. Human fetal lung fibroblasts promote invasion of extracellular matrix by normal tracheobronchial epithelial cells in vitro: a model of early airway gland development. Am J Respir Cell Mol Biol 8:69–76, 1993.PubMedGoogle Scholar
  162. 162.
    Heine UI, Munoz EF, Flanders KC, Roberts AB, Sporn MB. Colocalization of TGF-beta 1 and collagen I and III, fibronectin and glycosaminoglycans during lung branching morphogenesis. Development 109:29–36, 1990.PubMedGoogle Scholar
  163. 163.
    Roman J, McDonald JA. Expression of fibronectin, the integrin a5, and a-smooth muscle actin in heart and lung development. Am J Respir Cell Mol Biol 6:472–480, 1992.PubMedGoogle Scholar
  164. 164.
    Roman J, Little CW, McDonald JA. Potential role of RGD-binding integrins in mammalian lung branching morphogenesis. Development 112:551–558, 1991.PubMedGoogle Scholar
  165. 165.
    Schuger L, O’Shea S, Rheinheimer J, Varani J. Laminin in lung development: effects of anti-laminin antibody in murine lung morphogenesis. Dev Biol 137:26–32, 1990.PubMedCrossRefGoogle Scholar
  166. 166.
    Ruff M, Schiffmann E, Terranova V, Pert CB. Neuropeptides are chemoattractants for human tumor cells and monocytes: a possible mechanism for metastasis. Clin Immunol Immunopathol 37:387–396, 1985.PubMedCrossRefGoogle Scholar
  167. 167.
    Shimosegawa T, Said SI. Pulmonary calcitonin gene-related peptide immunoreactivity: nerve-endocrine cell interrelationships. Am J Respir Cell Mol Biol 4:126–134, 1991.PubMedGoogle Scholar
  168. 168.
    Baluk P, Nadel JA, McDonald DM. Calcitonin gene-related peptide in secretory granules of serous cells in the rat tracheal epithelium. Am J Respir Cell Mol Biol 8:446–453, 1993.PubMedGoogle Scholar
  169. 169.
    Wada C, Hashimoto C, Kameya T, Yamaguchi K, Ono M. Developmentally regulated expression of the calcitonin gene related peptide (CGRP) in rat lung endocrine cells. Virchows Archiv B Cell Pathol 55:217–223, 1988.Google Scholar
  170. 170.
    Johnson MD, Gray ME, Stahlman MT. Calcitonin gene-related peptide in human fetal lung and in neonatal lung disease. J Histochem Cytochem 36:199–204, 1988.PubMedGoogle Scholar
  171. 171.
    Hoyt RF, McNelly NA, Sorokin SP. Calcitonin gene-related peptide (CGRP) as regional mitogen for tracheobronchial epithelium of organ cultured fetal rat lungs. Am Rev Respir Dis 157:A498, 1973.Google Scholar
  172. 172.
    Cadieux A, Lanoue C, Sirois P, Barabe J. Carbamylcholine-and 5-hydroxytryptamine-induced contraction in rat isolated airways: inhibition by calcitonin gene-related peptide. Br J Pharmacol 101:193–199, 1990.PubMedGoogle Scholar
  173. 173.
    Gatto C, Lussky RC, Erickson LW, Berg KJ, Wobken JD, Johnson DE. Calcitonin and CGRP block bombesin-and substance P-induced increases in airway tone. J Appl Physiol 66:573–577, 1989.PubMedGoogle Scholar
  174. 174.
    Wang Y, Cutz E. Localization of cholecystokinin-like peptide in neuroendocrine cells of mammalian lungs: A light and electron microscopic immunohistochemical study. Anat Rec 236:198–205, 1993.PubMedCrossRefGoogle Scholar
  175. 175.
    Kanayama S, Liddle RA. Regulation of intestinal cholecystokinin and somatostatin mRNA by bombesin in rats. Am J Physiol 261:G71-G77, 1991.PubMedGoogle Scholar
  176. 176.
    Liehr RM, Rosewicz S, Reidelberger RD, Solomon TE. Direct vs. indirect effects of bombesin on pancreatic growth. Digestion 46:202–207, 1990.PubMedGoogle Scholar
  177. 177.
    Lu L, Logsdon CD. CCK, bombesin, and carbachol stimulate c-fos,cjun, and c-myc oncogene expression in rat pancreatic acini. Am J Physiol 263:G327-G332, 1992.PubMedGoogle Scholar
  178. 178.
    Sethi T, Rozengurt E. Multiple neuropeptides stimulate clonal growth of small cell lung cancer: effects of bradykinin, vasopressin, cholecystokinin, galanin, and neurotensin. Cancer Res 51:3621–3623, 1991.PubMedGoogle Scholar
  179. 179.
    Seuwen K, Pouyssegur J. Serotonin as a growth factor. Biochem Pharmacol 39:985–990, 1990.PubMedCrossRefGoogle Scholar
  180. 180.
    Julius D, Livelli TJ, Jessell TM, Axel R. Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation. Science 244:1057–1062, 1989.PubMedCrossRefGoogle Scholar
  181. 181.
    Seldeslagh KA, Lauweryns JM. Endothelin in normal lung tissue of newborn mammals: immunocytochemical distribution and colocalization with serotonin and calcitonin gene-related peptide. J Histochem Cytochem 41:1495–1502, 1993.PubMedGoogle Scholar
  182. 182.
    Uchida Y, Ninomiya H, Saotome M, Nomura A, Ohtsuka M, Yanagisawa M, Goto K, Masaki T, Hasegawa S. Endothelin, a novel vasoconstrictor peptide, as potent bronchoconstrictor. Eur J Pharmacol 154:227, 1988.PubMedCrossRefGoogle Scholar
  183. 183.
    Simonson MS, Dunn MJ. Cellular signaling by peptides of the endothelin gene family. FASEB J 4:2989–3000, 1990.PubMedGoogle Scholar
  184. 184.
    Takuwa N, Takuwa Y, Yanagisawa M, Yamashita K, Masaki T. A novel vasoactive peptide endothelin stimulates mitogenesis through inositol lipid turnover in Swiss 3T3 fibroblasts. J Biol Chem 264:7856–7861, 1989.PubMedGoogle Scholar
  185. 185.
    Fox HE, Badalian SS. Ultrasound prediction of fetal pulmonary hypoplasia in pregnancies complicated by oligohydramnios and in cases of congenital diaphragmatic hernia. Am J Perinatol 11:104–108, 1994.PubMedGoogle Scholar
  186. 186.
    Sherer DM, Davis JM, Woods JR. Pulmonary hypoplasia. Obstet Gynecol Survey 45:792–803, 1990.CrossRefGoogle Scholar
  187. 187.
    Johnson DE, Anderson WR, Burke BA. Pulmonary neuroendocrine cells in pediatric lung disease: alterations in airway structure in infants with bronchopulmonary dysplasia. Anat Rec 236:115–119, 1993.PubMedCrossRefGoogle Scholar
  188. 188.
    Johnson DE, Lock JE, Elde RP, Thompson TR. Pulmonary neuroendocrine cells in hyaline membrane disease and bronchopulmonary dysplasia. Pediatr Res 16:446–454, 1982.PubMedGoogle Scholar
  189. 189.
    Ghatei MA, Sheppard MN, Henzen-Logman S, Blank MA, Polak JM, Bloom SR. Bombesin and vasoactive intestinal polypeptide in the developing lung: Marked changes in acute respiratory distress syndrome. J Clin Endocrinol Metab 57:1226–1232, 1983.PubMedCrossRefGoogle Scholar
  190. 190.
    Lauweryns JM, Cokelaere M, Lerut T. Cross-circulation studies on the influence of hypoxia and hypoxaemia on neuro-epithelial bodies in young rabbits. Cell Tissue Res 193:373–386, 1978.PubMedCrossRefGoogle Scholar
  191. 191.
    de la Monte SM, Hutchins GM, Moore GW. Respiratory epithelial cell necrosis is the earliest lesion of hyaline membrane disease of the newborn. Am J Pathol 123:155–160, 1986.PubMedGoogle Scholar
  192. 192.
    Willey JC, Lechner JF, Harris CC. Bombesin and the C-terminal tetradecapeptide of gastrin-releasing peptide are growth factors for normal human bronchial epithelial cells. Exp Cell Res 153:245–248, 1984.PubMedCrossRefGoogle Scholar
  193. 193.
    Johnson DE, Georgieff MK. Pulmonary neuroendocrine cells, their secretory products and their potential roles in health and chronic lung disease in infancy. Am Rev Respir Dis 140:1807–1812, 1989.PubMedGoogle Scholar
  194. 194.
    Aguayo SM, Miller YE, Waldron JA, Sunday ME, Staton GW, King TE. Brief report: idiopathic diffuse hyperplasia of pulmonary neuroendocrine cells and airways disease. N Engl J Med 327:1285–1288, 1992.PubMedCrossRefGoogle Scholar
  195. 195.
    Bousbaa H, Fleury-Feith J. Effects of a long-standing challenge on pulmonary neuroendocrine cells of actively sensitized guinea pigs. Am Rev Respir Dis 144:714–717, 1991.PubMedGoogle Scholar
  196. 196.
    Severi C, Jensen RT, Erspamer V, D’Arpino L, Coy DH, Torsoli A, Delle Fave G. Different receptors mediate the action of bombesin-related peptides on gastric smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 260:G683-G690, 1991.Google Scholar
  197. 197.
    Erspamer GF, Mazzanti G, Farruggia G, Nakajima T, Yanaihara N. Parallel bioassay of litorin and phyllolitorins on smooth muscle preparations. Peptides 5:765–768, 1984.CrossRefGoogle Scholar
  198. 198.
    Gosney J, Heath D, Smith P, Harris P, Yacoub M. Pulmonary endocrine cells in pulmonary arterial disease. Arch Pathol Lab Med 113:337–341, 1989.PubMedGoogle Scholar
  199. 199.
    Johnson DE, Wobken JD, Landrum BG. Changes in bombesin, calcitonin and serotonin immunoreactive pulmonary neuroendocrine cells in cystic fibrosis and following prolonged mechanical ventilation. Am Rev Respir Dis 137:123–131, 1988.PubMedGoogle Scholar
  200. 200.
    Chen MF, Kimizuka G, Wang NS. Human fetal lung changes associated with maternal smoking during pregnancy. Pediatr Pulmonol 3:51–58, 1987.PubMedCrossRefGoogle Scholar
  201. 201.
    Weitzman M, Gortmaker S, Walker DK, Sobol A. Maternal smoking and childhood asthma. Pediatrics 85:505–511, 1990.PubMedGoogle Scholar
  202. 202.
    Hanrahan JP, Tager IB, Segal MR, Tosteson TD, Castile RG, van Vunakis H, Weiss ST, Speizer FE. The effect of maternal smoking during pregnancy on early infant lung function. Am Rev Respir Dis 145:1129–1135, 1992.PubMedGoogle Scholar
  203. 203.
    Martinez FD, Cline M, Burrows B. Increased incidence of asthma in children of smoking mothers. Pediatrics 89:21–26, 1992.PubMedGoogle Scholar
  204. 204.
    McBride JT, Springall DR, Winter RJD, Polak JM. Quantitative immunocytochemistry shows calcitonin gene-related peptide-like immunoreactivity in lung neuroendocrine cells is increased by chronic hypoxia in the rat. Am J Resp Cell Mol Biol 3:587–593, 1990.Google Scholar
  205. 205.
    Suzuki K, Minei LJ, Johnson EE. Effect of nicotine upon uterine blood flow in the pregnant rhesus monkey. Am J Obstet Gynecol 136:1009–1013, 1980.PubMedGoogle Scholar
  206. 206.
    Marchevsky AM, Keller S, Fogel JR, Kleinerman J. Quantitative studies of argyrophilic APUD cells in airways. Am Rev Respir Dis 129:477–480, 1984.PubMedGoogle Scholar
  207. 207.
    Bousbaa H, Fleury-Feith J. Effects of a long-standing challenge on pulmonary neuroendocrine cells of actively sensitized guinea pigs. Am Rev Respir Dis 144:714–717, 1991.PubMedGoogle Scholar
  208. 208.
    Bousbaa H, Poron F, Fleury-Feith J. Changes in chromogranin A-immunoreactive guinea-pig pulmonary neuroendocrine cells after sensitization and challenge with ovalbumin. Cell Tissue Res 275:195–199, 1994.PubMedCrossRefGoogle Scholar
  209. 209.
    Impicciatore M, Bertaccini G. The bronchoconstrictor action of the tetradecapeptide bombesin in the guinea-pig. J Pharm Pharmacol 25:872–875. 1973.PubMedGoogle Scholar
  210. 210.
    Palmer JBD, Cuss FMC, Mulderry PK, Ghatei MA, Springall DR, Cadieux A, Bloom SR, Polak JM, Barnes PJ. Calcitonin gene-related peptide is localised to human airway nerves and potently constricts human airway smooth muscle. Br J Pharmacol 91:95–101, 1987.PubMedGoogle Scholar
  211. 211.
    Hamel R, Ford-Hutchinson AW. Contractile activity of calcitonin gene-related peptide on pulmonary tissues. J Pharm Pharmacol 40:210, 211, 1988.PubMedGoogle Scholar
  212. 212.
    Tschirhart E, Bertrand C, Theodorsson E, Landry Y. Evidence for the involvement of calcitonin gene-related peptide in the epithelium-dependent contraction of guinea-pig trachea in response to capsaicin. Naunyn-Schmiedeberg’s Arch Pharmacol 342:177–181, 1990.CrossRefGoogle Scholar
  213. 213.
    Cadieux A, Springall DR, Mulderry PK, Rodrigo J, Ghatei MA, Terenghi G, Bloom SR, Polak JM. Occurrence, distribution and ontogeny of CGRP immunoreactivity in the rat lower respiratory tract: effect of capsaicin treatment and surgical denervations. Neuroscience 19:605–627, 1986.PubMedCrossRefGoogle Scholar
  214. 214.
    Kroll F, Karlsson JA, Lundberg JM, Persson CGA. Capsaicin-induced bronchoconstriction and neuropeptide release in guinea pig perfused lungs. J Appl Physiol 68:1679–1687, 1990.PubMedGoogle Scholar
  215. 215.
    Salonen RO, Webber SE, Widdicombe JG. Effects of neuropeptides and capsaicin on the canine tracheal vasculature in vivo. Br J Pharmacol 95:1262–1270, 1988.PubMedGoogle Scholar
  216. 216.
    Aoki Y. Histopathological findings of the lung and trachea in sudden infant death syndrome. Jpn J Leg Med 48:141–149, 1994.Google Scholar
  217. 217.
    Czegledy-Nagy EN, Cutz E, Becker LE. Sudden death in infants under one year of age. Pediatr Pathol 13:671–684, 1993.PubMedGoogle Scholar
  218. 218.
    Perrin DG, Cutz E, Becker LE, Bryan AC. Madapallimatum A, Sole MJ. Sudden infant death syndrome: increased carotid-body dopamine and noradrenaline content. Lancet 8:535–537, 1984.CrossRefGoogle Scholar
  219. 219.
    Cutz E, Wang D, Perrin DG. Bombesin/gastrin releasing peptide and cholecystokinin gene expression in lungs of sudden infant death syndrome victims. Lab Invest 1:64A-107A, 1991.Google Scholar
  220. 220.
    Jeffery PK. Pathology of asthma. Br Med J 48:23–39, 1992.Google Scholar
  221. 221.
    Gillan JE, Pape KE, Cutz E. Association of changes in bombesin immunoreactive neuroendocrine cells in lungs of newborn infants with persistent fetal circulation and brainstem damage due to birth asphyxia. Pediatr Res 20:828–833, 1986.PubMedCrossRefGoogle Scholar
  222. 222.
    Kinney HC, Filiano JJ, Sleeper LA, Mandell F, Valdes-Dapena M, White WF. Decreased muscarinic receptor binding in the arcuate nucleus in sudden infant death syndrome. Science 269:1446–1450, 1996.CrossRefGoogle Scholar
  223. 223.
    Haque AK, Mancuso MG, Hokanson J, Nguyen ND. Bronchiolar wall changes in sudden infant death syndrome: morphometric study of new observation. Pediatr Pathol 11:551–568, 1991.PubMedGoogle Scholar
  224. 224.
    Southall DP, Samuels MP, Talbert DG. Recurrent cyanotic episodes with severe arterial hypoxemia and intrapulmonary shunting. A mechanism for sudden death. Arch Dis Child 65:953–961, 1990.PubMedCrossRefGoogle Scholar
  225. 225.
    Stocker JT. Neonatal pulmonary pathology. In: Reed GB, Claireaux AE, Bain AD, eds. Diseases of the fetus and newborn. St. Louis, MO: Mosby, 1989: 247–274.Google Scholar
  226. 226.
    Adriaensen D, Scheuermann DW. Neuroendocrine cells and nerves of the lung. Anat Rec 236:70–85, 1993.PubMedCrossRefGoogle Scholar
  227. 227.
    Kharasch VS, Sweeney TD, Fredberg J, Lehr J, Damokosh AI, Avery ME. Pulmonary surfactant as a vehicle for intratracheal delivery of technetium sulfur colloid and pentamidine in hamster lungs. Am Rev Respir Dis 144:909–913, 1991.PubMedGoogle Scholar
  228. 228.
    Aguayo SM, Kane MA, King TE, Schwarz MI, Grauer L, Miller YE. Increased levels of bombesin-like peptides in the lower respiratory tract of asymptomatic cigarette smokers. J Clin Invest 84:1105–1113, 1989.PubMedCrossRefGoogle Scholar
  229. 229.
    Sen N, Cake MH. Enhancement of disaturated phosphatidylcholine synthesis by epidermal growth factor in cultured fetal lung cells involves a fibroblast-epithelial cell interaction. Am J Respir Cell Mol Biol 5:337–343, 1991.PubMedGoogle Scholar
  230. 230.
    Aguayo SM, King TE, Waldron JA, Sherritt KM, Kane MA, Miller YE. Increased pulmonary neuroendocrine cells with bombesin-like immunoreactivity in adult patients with eosinophilic granuloma. J Clin Invest 86:838–844, 1990.PubMedGoogle Scholar
  231. 231.
    Zachary I, Sinnett-Smith JW, Rozengurt E. Early events elicited by bombesin and structurally related peptides in quiescent Swiss 3T3 cells. I. Activation of protein kinase c and inhibition of epidermal growth factor binding. J Cell Biol 102:2211–2222, 1986.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  1. 1.Department of PathologyBrigham & Women’s Hospital and Harvard Medical SchoolBoston

Personalised recommendations