Advertisement

Microsystem Technologies

, Volume 2, Issue 1, pp 197–202 | Cite as

Experimental determination of mechanical properties of Ni and Ni-Fe microbars

  • E. Mazza
  • S. Abel
  • J. Dual
Technical Papers

Abstract

In this study, nickel and nickel-iron alloy microsamples produced using the LIGA technique are investigated. With vibration tests and tensile tests, design parameters such as Young’s modulus, elastic limit, and failure stress are determined. A new microsample tensile test apparatus is presented, in which forces and elongation are separately measured with very high accuracy. The comparison between the Young’s modulus which is determined with vibration experiments and the Young’s modulus derived from tensile tests ensures the reliability of the measurements presented. The error sources are analysed with the help of finite element models and the uncertainty in determining the Young’s modulus is calculated. The strength values measured for LIGA specimens are about 3 times higher than for comparable macroscopic specimens.

Keywords

Tensile Test Vibration Test Testing Region Light Optical Microscope Vibration Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen G; Mehrengany M; Howe RT; Senturia S (1987) Microfabricated structures for the in situ measurement of residual stress, Young's modulus, and ultimate strain of thin films. Appl. Phys. Lett 51 (4)Google Scholar
  2. Artz PE; Sanchez J; Nix WD (1991) Mechanische Festigkeit von dünnen Schichten als Grundlage für Werkstoffe der Mikrotechnik. VDI Berichte, Nr. 933Google Scholar
  3. ASM Handbook 1992 10th edition, Vol. 2, 431–435Google Scholar
  4. Brugger, R. (1984) Die galvanische Vernickelung, 2. Auflage, Eugen G. Leutze Verlag, 47–96Google Scholar
  5. Ehrfeld W;Lehr H (1995) Deep X-Ray Lithography for the Production of three-dimensional Microstructures from Metals, Polymers and Ceramics. Radiation Physics and Chemistry, 45, 3, 349–365CrossRefGoogle Scholar
  6. Grimmet DL; Schwartz M; Nobe K (1991) DC and Pulsed Electrodeposition and Deposit Characteristics of Iron-Nickel-Alloys, Proceedings of the Electrochemical Society, 92-10, (2nd Proc. Int. Symp. Magn. Mater. Processes, 393–314)Google Scholar
  7. Jacobson E; Sliwa W (1979) Structure and Mechanical Properties of Electrodeposited Nickel. Plating and Surface Finishing 66Google Scholar
  8. Kunz Ch (1995) Schwingungsuntersuchungen an Mikrobalken. Diploma Work. ETH Zurich, Institute of MechanicsGoogle Scholar
  9. Landa V (1984) Galvanisch abgeschiedene dicke Nickel-Eisen-Schichten und ihre Eigenschaften. Metalloberfläche, 38Google Scholar
  10. Mazza E;Danuser G;Dual J (1996) Light optical deformation measurements in microbars with nanometer resolution. Microsystem Technologies (Sensor-Actuators-System Integration). Vol 2, No. 2, 83–91Google Scholar
  11. Nix WD; Noble DB; Turlo JF (1990) Mechanism and Kinetics of Misfit Dislocation Formation in Heteroepitaxial Thin Films. MRS Symp. Proc. Thin Films: Stresses and Mechanical Properties II, Bd. 188Google Scholar
  12. Nopper M (1994) Abscheidung von NiFe Legierungen in Mikrostrukturen, Diploma Work. IMM MainzGoogle Scholar
  13. Sard R; Leidheiser H; Ogburn F (1975) Properties of Electrodeposits: Their Measurement and Significance, The Electrochemical SocietyGoogle Scholar
  14. Schweitz JA (1992) Mechanical Characterization of Thin Films by Micromechanical Techniques. MRS Bulletin, JulyGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • E. Mazza
    • 1
  • S. Abel
    • 2
  • J. Dual
    • 1
  1. 1.Institute of MechanicsETHZürichSwitzerland
  2. 2.IMM Institute of MicrotechnologyMainzGermany

Personalised recommendations