Skip to main content
Log in

Charge invariance and group-transformation properties of the scattering in a dynamical model

Зарядовая инвариантность и групповые трансформационные свойства рассеяния в динамической модели

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

A simple dynamical scheme is used in which as the result of the high-energy collision of two heavy particles ana priori arbitrary number of soft scalar particles can be produced. It is shown that the imposition of charge invariance is sufficient to derive the transformation properties of the transition operator with respect to the variables charge and number of soft particles emitted. As a consequence a mapping is established between a certain matrix element of the transition operator and the elements ofSU 1,1. In establishing this mapping an undetermined function γ(k, θ) is introduced. The predictions of the model on the law of multiple production are discussed and it is shown how the above mentioned arbitrary function characterizing the mapping can be phenomenologically determined from a comparison with experiment.

Riassunto

Si propone un semplice schema dinamico nel quale come conseguenza dell’urto di due particelle pesanti di alta energia si può produrre un numero arbitrario di particelle leggere scalari. Si mostra che l’imposizione dell’invarianza della carica è sufficiente per derivare le proprietà di trasformazione dell’operatore di transizione rispetto alle variabili carica e numero di particelle leggere emesse. Si stabilisce quindi una corrispondenza tra un certo elemento di matrice dell’operatore di transizione e gli elementi diSU 1,1. Nello stabilire questa corrispondenza si introduce una funzione indeterminata γ(k,θ). Si discutono le predizioni del modello circa la legge di produzione multipla e si mostra come la sunnominata funzione arbitraria che caratterizza la trasformazione può essere fenomenologicamente determinata dal confronto con l’esperimento.

Резюме

Используется простая динамическая схема, в которой в результате соударения двух тяжелых частиц при высокой энергии, а приори, может родиться произвольное число легких скалярных частиц. Показывается, что наложение зарядовой инвариантности является достаточным для вывода трансформационных свойств оператора перехода относительно переменных заряда и числа испущенных легких частиц. Как следствие устанавливается диаграмма между определенным матричным элементом оператора перехода и элементамиSU 1,1. При установлении этой диаграммы вводится неопределенная функция γ(k, θ). Обсуждаются предсказания модели о законе множественного рождения, и показывается, как выше упомянутая произвольная функция, характеризующая диаграмму, может быгь феноменологически определена из сравнения с экспериментом.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nambu andD. Lurié:Phys. Rev.,125, 1429 (1962);Y. Nambu andE. Shrauner:Phys. Rev.,128, 862 (1962);S. Weinberg:Phys. Rev. Lett.,18, 188 (1967); see also the references quoted there.

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Schwinger: inQuantum Theory of Angular Momentum, Edited byL. C. Biedenharn andH. Van Dam (New York, 1965), p. 229.

  3. L. C. Biedenharn andW. J. Holman:Ann. of Phys.,39, 1 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  4. Note that, because of eqs. (3), (8), (9) bothN±Q are even positive integer numbers.

  5. V. Bargmann:Ann. of Math.,48, 568 (1947).

    Article  MathSciNet  Google Scholar 

  6. Note that, by eq. (5.13), the vanishing ofP ν(γ) in the limit γ→∞ does not imply the vanishing of the elastic cross-section. The discussion of the behavior of the various cross-sections would in fact still require the specification of thek dependence ofA ν(k). We will not, however, discuss this point here although this would be relevant to ensure that unitarity is not violated in the model. We would like to thank Prof.D. Amati and Prof.S. Deser for a discussion on this subject.

  7. E. Fermi:Progr. Theor. Phys.,5, 570 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  8. D. Amati, S. Fubini andA. Stanghellini:Nuovo Cimento,26, 896 (1962).

    Article  Google Scholar 

  9. S. Hayakawa: inTheoretical Physics, IAEA (Vienna, 1963), p. 485.

    Google Scholar 

  10. P. H. Fowler andD. H. Perkins:Proc. Roy. Soc., A,278, 401 (1964).

    Article  ADS  Google Scholar 

  11. V. S. Barashenkov, V. M. Maltsen, I. Patera andV. D. Toneev:Fort. d. Phys.,14, 357 (1966).

    Article  Google Scholar 

  12. Y. Pal andB. Peters:Mat. Fys. Medd. Dan. Vid. Selsk.,33, No. 15 (1964);B. Peters:Proc. Int. Conf. on Cosmic Rays, published by the Institute of Physics and the Physical Society, London (1965); for a complete analysis, see, for instanceY. Pal:Cosmic Rays and Their Interactions, preprint of the Tata Institute of Fundamental Research (January 1966), to be published in the second edition ofHandbook of Physics, edited byE. U. Condon andH. Odishaw (New York). We would like to thank Prof.C. Castagnoli for bringing these papers to our attention.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Перевебено ребакцуей.

Supported in part by USAF EOAR Grant 66-29.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovannini, A., Predazzi, E. Charge invariance and group-transformation properties of the scattering in a dynamical model. Nuovo Cimento A (1965-1970) 52, 255–273 (1967). https://doi.org/10.1007/BF02739288

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02739288

Keywords

Navigation