, Volume 5, Issue 3, pp 265–274 | Cite as

Interaction of nuclear factors with the cAMP response elements of the human β3-adrenoceptor gene

Original Articles


Four potential cyclic adenosine 3′,5′-monophosphate (cAMP) response elements (CREs), each having at most two mismatches from the classical canonical sequence, have been identified in the 5′UTR of the human β3-adrenoceptor gene by Liggett and Schwinn (1991). Recently, three of these CREs were shown to confer responsiveness to cAMP when cloned into a CAT reporter vector (Thomas et al., 1992). In this study, in vitro gel-retardation assays have shown that recombinant human CRE binding protein-1 (CREB-1) or activating transcription factor-1 (ATF-1) can interact specifically with these four putative CREs (termed β3CRE2), although with different affinities. Nuclear extracts from human brown or white adipose tissue contain proteins interacting with β3CRE3 and β3CRE2. These adipose nuclear factors were shown by competition assays and the use of antibodies to differ from CREB-1 or ATF-1. The nuclear factor(s) interacting with β3CRE2 was found in human and rat brown and white adipose tissues, but not in the other nonadipose tissues examined, i.e., rat lung, liver, kidney, and heart, suggesting an adipose tissue-specific DNA binding or expression pattern. β3CRE2 is found to constitute a hexameric element that is highly homologous to the binding site for members of the nuclear hormone receptor superfamily, and a competition assay using this site has provided evidence that an adipose tissuespecific orphan member of this superfamily may bind to β3CRE2. Reporter gene assays have indicated that β3CRE2 and β3CRE3 slightly repress the basal level of transcription and that β3CRE2 confers cAMP responsiveness, whereas β3CRE3 does not.

Key Words

β3-adrenoceptor cAMP transcription CREB adipose tissue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alksnis, M., Barkhem, T., Stromsted, P.-E., Ahola, H., Kutoh, E., Gustafsson, J.-A., Poellinger, L., and Nilsson, S. (1991).J. Biol. Chem. 266, 10,078–10,085Google Scholar
  2. Arch, J. R. S., Ainsworth, A. T., Cawthorne, M. A., Piercy, V., Sennitt, M. V., Thody, V. E., Wilson, C., and Wilson, S. (1984).Nature 309, 163–165.PubMedCrossRefGoogle Scholar
  3. Bohm, S., Bakke, M., Nilsson, M., Zanger, U., Spyrou, G., and Lund, J. (1993).J. Biol. Chem. 268, 3952–3963.PubMedGoogle Scholar
  4. Brown, J. A. and Machida, C. A. (1994).DNA Sequence 4, 319–324.PubMedGoogle Scholar
  5. Champigny, O., Holloway, B. R., and Ricquier, D. (1992).Mol. Cell. Endocrinol. 86, 73–82.PubMedCrossRefGoogle Scholar
  6. Chawla, A. and Lazar, M. A. (1993).J. Biol. Chem. 268, 16,265–16,269.Google Scholar
  7. Deng, C., Paoloni-Giacobino, A., Kuehne, F., Boss, O., Revelli, J.-P., Moinat, M., Cawthorne, M. A., Muzzin, P., and Giacobino, J.-P. (1996).Br. J. Pharmacol. 118, 929–934.PubMedGoogle Scholar
  8. Dynan, W. S. and Tjian, R. (1982).Cell 32, 669–680.CrossRefGoogle Scholar
  9. Evans, R. M. (1988).Science 240, 889–895.PubMedCrossRefGoogle Scholar
  10. Gerster, T. and Roeder, R. G. (1989).Proc. Natl. Acad. Sci. USA 85, 6347–6351.CrossRefGoogle Scholar
  11. Giacobino, J.-P. (1995).Eur. J. Endocrinol. 132, 377–385.PubMedGoogle Scholar
  12. Granneman, J. G. and Lahners, K. N. (1992),Endocrinology 130, 109–114.PubMedCrossRefGoogle Scholar
  13. Hamada, K., Gleason, S. L., Levi, B.-Z., Hirscfeld, S., and Appella, E. (1989).Proc. Natl. Acad. Sci. USA 86, 8289–8293.PubMedCrossRefGoogle Scholar
  14. Howe, R. (1993).Drug Future 18, 529–549.Google Scholar
  15. Hurst, H. C., Masson, N., Jones, N. C., and Lee, K. A. W. (1990).Mol. Cell. Biol. 10, 6192–6203.PubMedGoogle Scholar
  16. Kutoh, E. and Schwander, J. (1993).Biophys. Biochem. Res. Commun. 3, 1475–1482.CrossRefGoogle Scholar
  17. Kutoh, E., Margot, J., and Schwander, J. (1993).Mol. Endocrinol. 7, 1295–1316.CrossRefGoogle Scholar
  18. Law, S. W., Conneely, O. M., DeMayo, F. J., and O'Malley, B. W. (1992).Mol. Endocrinol. 6, 2129–2135.PubMedCrossRefGoogle Scholar
  19. Liggett, S. B. and Schwinn D. A. (1991).DNA Sequence 2, 61–63.PubMedGoogle Scholar
  20. Liu, F., Thompson, M. A., Wagner, S., Greenberg, M. E., and Green, M. R. (1993).J. Biol. Chem. 268, 6714–6720.PubMedGoogle Scholar
  21. Luckow, B. and Schütz, G. (1987).Nucleic Acids. Res. 15, 5490.PubMedCrossRefGoogle Scholar
  22. Luo, X., Ikeda, Y., and Parker, K. L. (1994).Cell 77, 481–490.PubMedCrossRefGoogle Scholar
  23. Masson, N., Ellis, M., Goodbourm, S., and Lee, K. (1992).Mol. Cell. Biol. 12, 1096–1106.PubMedGoogle Scholar
  24. Masson, N., Hurst, H. C., and Lee, K. A. W. (1993).Nucleic Acids. Res. 21, 1163–1169.PubMedCrossRefGoogle Scholar
  25. Meyer, T. and Habener, J. (1993).Endocr. Rev. 14, 269–290.PubMedCrossRefGoogle Scholar
  26. Michael, L. F., Alcorn, J. L., Gao, E., and Mendelson, C. (1996).Mol. Endocrinol. 10, 159–170.PubMedCrossRefGoogle Scholar
  27. Monia, Y., Peleg, S., and Gagel, R. (1995).Mol. Endocrinol. 9, 784–793.PubMedCrossRefGoogle Scholar
  28. Nagata, T., Sergars, J. H., Levi, B.-Z., and Ozato, K. (1992).Proc. Natl. Acad. Sci. USA 89, 937–941.PubMedCrossRefGoogle Scholar
  29. Orten, D., Strawhecker, J., Sanderson, S., Huang, D., Prystowsky, M., and Hinrichs, S. (1994).J. Biol. Chem. 269, 32,254–32,263.Google Scholar
  30. Pestell, R., Hollenberg, A., Albanese, C., and Jameson, J. L. (1994).J. Biol. Chem. 269, 31,090–31,096.Google Scholar
  31. Revelli, J.-P., Muzzin, P., and Giacobino, J.-P. (1992).Biochem. J. 286, 743–746.PubMedGoogle Scholar
  32. Revelli, J.-P., Muzzin, P., Paoloni, A., Moinat, M., and Giacobino, J.-P. (1993).J. Mol. Endocrinol. 10, 193–197.PubMedCrossRefGoogle Scholar
  33. Rauscher, F. J., Morris, J., Tounay, O., Cook, D., and Curran, T. (1990).Science 250, 1259–1262.PubMedCrossRefGoogle Scholar
  34. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.Google Scholar
  35. Schreiber, E., Matthias, P., Müller, M. M., and Schaffner, W. (1989).Nucleic Acids. Res. 17, 6419.PubMedCrossRefGoogle Scholar
  36. Selden, R. F., Howie, K. B., Rowe, M. E., Goodman, H. M., and More, D. D. (1986).Mol. Cell. Biol. 6, 3173–3179.PubMedGoogle Scholar
  37. Thomas, R. F., Holt, B. D., Schwinn, D. A., and Liggett, S. B. (1992).Proc. Natl. Acad. Sci. USA 89, 4490–4494.PubMedCrossRefGoogle Scholar
  38. Van Spronsen, A., Nahmias, C., Krief, S., Briend-Sutren, M. M., Strosberg, A. D., and Emorine, L. J. (1993).Eur. J. Biochem. 213, 1117–1124.PubMedCrossRefGoogle Scholar
  39. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J. M. (1994).Nature 373, 425–432.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  1. 1.Département de Biochimie médicaleCentre Médical UniversitaireGenève 4Switzerland

Personalised recommendations