, Volume 6, Issue 1, pp 31–37 | Cite as

Bovine granulocyte chemotactic protein-2 is secreted by the endometrium in response to interferon-tau (IFN-τ)

  • M. Glaucia Teixeira
  • Kathy J. Austin
  • David J. Perry
  • Vern D. Dooley
  • Greg A. Johnson
  • Brian R. Francis
  • Thomas R. Hansen
Original Articles


Interferon-tau (IFN-τ) is secreted by the bovine conceptus and may regulate synthesis of uterine endometrial cytokines to provide an environment that is conducive to embryo development and implantation. Interferon-τ stimulates secretion of an 8-kDa uterine protein (P8) in the cow. P8 was purified, digested to yield internal peptides, and partially sequenced to determine identity. Two internal peptides had 100% (13-mer) and 92% (12-mer) amino acid sequence identity with bovine granulocyte chemotactic protein-2 (bGCP-2). Bovine GCP-2 is an α-chemokine that acts primarily as a potent chemoattractant for granulocyte cells of the immune system. A peptide was synthesized based on a region of bGCP-2 that overlapped with a P8 peptide amino acid sequence, coupled to keyhole limpet hemocyanin, and used to generate high titer polyclonal antiserum in sheep. Western blots revealed that bGCP-2 was not released by endometrium from day 14 nonpregnant cows, but was released in response to 25 nM IFN-τ (p<0.05). Uterine GCP-2 exhibited high affinity to heparin agarose, a characteristic shared by all α chemokines. This is the first report describing presence of GCP-2 in the uterine endometrium and regulation by IFN-τ. The regulation of bGCP-2 by IFN-τ may have important implications for cytokine networking in the uterus during pregnancy. Also, the regulation of inflammation and angiogenesis by bGCP-2 working together with other cytokines may be integral to establishing early pregnancy and implantation in the cow.

Key Words

Chemokine granulocyte chemotactic protein interferon pregnancy uterus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roberts, R. M., Godkin, J. D., Bazer, F. W., Fincher, K. B., Thatcher, W. W., Knickerbocker, J. J., and Bartol, F. F. (1985). In:Implantation of the Human Embryo. Edwards, K. G., Purdy, J., and Steptoe, P. J. (eds.). Academic, London, pp. 253–282.Google Scholar
  2. 2.
    Hansen, P. J. (1995).J. Reprod. Fertil. (Suppl.)46, 69–82.Google Scholar
  3. 3.
    Mitchel, M. D., Trautman, M. S., and Dudley, D. J. (1993).Placenta 14, 249–275.CrossRefGoogle Scholar
  4. 4.
    Cross, J. C., Werb, Z., and Fisher, S. J. (1994).Science 266, 1508–1518.PubMedCrossRefGoogle Scholar
  5. 5.
    Robertson, S. A., Semark, R. F., Guilbert, L. J., and Wegmann, T. G. (1994).Critical Rev. Immunol. 14, 239–292.Google Scholar
  6. 6.
    Roberts, R. M., Malathy, P.-V., Hansen, T. R., Fann, C. E., and Imakawa, K. (1990).J. Anim. Sci. 68, 28–38.Google Scholar
  7. 7.
    Thatcher, W. W., Meyer, M. D., and Danet-Desnoyers, G. (1995).J. Reprod. Fertil. 49, 15–28.Google Scholar
  8. 8.
    Imakawa, K., Helmer, S. D., Nephew, K. P., Meka, C. S. R., and Christenson, R. K. (1993).Endocrinology 132, 1869–1871.PubMedCrossRefGoogle Scholar
  9. 9.
    Roitt, I., Brostoff, J., and Male, D. (1989).Immunology, 2nd ed. Gower Medical, London, England.Google Scholar
  10. 10.
    Rueda, B. R., Naivar, K. A., George, E. M., Austin, K. J., Francis, H., and Hansen, T. R. (1993).J. Interferon Res. 13, 295–301.Google Scholar
  11. 11.
    Naivar, K. A., Ward, S. K., Austin, K. J., Moore, D. W., and Hansen, T. R. (1995).Biol. Reprod. 52, 848–854.PubMedCrossRefGoogle Scholar
  12. 12.
    Austin, K. J., Ward, S. K., Teixeira, M. G., Dean, V. C., Moore, D. W., and Hansen, T. R. (1996).Biol. Reprod. 54, 600–606.PubMedCrossRefGoogle Scholar
  13. 13.
    Oppenheim, J. J., Zachariae, C. O. C., Mukaida, N., and Matsushima, K. (1991).Ann. Rev. Immunol. 9, 617–648.Google Scholar
  14. 14.
    Proost, P., De Wolf-Peeters, C., Conings, R., Opdenakker, G., Billiau, A., and Vandamme, J. V. (1993).J. Immunol. 150, 1000–1010.PubMedGoogle Scholar
  15. 15.
    Proost, P., Wuyts, A., Conings, R., Lenaerts, J. P., Billiau, A., Opdenakker, G., and Vandamme, J. V. (1993).Biochem. 32, 10,170–10,177.Google Scholar
  16. 16.
    Murphy, P. M. (1994).Annul Rev. Immunol. 12, 593–633.CrossRefGoogle Scholar
  17. 17.
    Koch, A. E., Polverini, P. J., Kunkle, S. L., Harlow, L. A., DiPietro, L. A., Elner, V. M., Elner, S. G., and Strieter, R. M. (1992).Science 258, 1798–1801.PubMedCrossRefGoogle Scholar
  18. 18.
    Tanaka, Y., Adams, D. H., Hubscher, S., Hirano, H., Siebenlist, U., and Shaw, S. (1993).Nature 361, 79–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Zucker, M. B., and Katz, I. R. (1991).Proc. Soc. Exp. Biol. Med. 198, 693–702.PubMedGoogle Scholar
  20. 20.
    Dunlop, D. J., Wright, E. G., Lorimore, S., Graham, G. J., Holyoake, T., Kerr, D. J., Wolpe, S. D., and Pragnell, I. B. (1992).Science 258, 1798–1801.CrossRefGoogle Scholar
  21. 21.
    Fahey, T. J., III, Sherry, B., Tracey, K. J., van Deventer, S., Jones, W. G., II, Minei, J. P., Morgello, S., Shires, G. T., and Cerami, A. (1990).Cytokine 2, 92–99.PubMedCrossRefGoogle Scholar
  22. 22.
    Valente, A. J., Rozek, M. M., Sprague, E. A., and Schwartz, C. J. (1992).Circulation 86, 11,120–11,125.Google Scholar
  23. 23.
    Goldstein, I. M. (1992). In:Inflammation: Basic Principles and Clinical Correlates. 2nd ed., Gallin, J. I., Goldstein, I. M., and Snyderman, R. (eds.). Raven, New York, pp. 5574.Google Scholar
  24. 24.
    Luster, A. D. and Leder, P. (1993).J. Exp. Med. 178, 1057–1065.PubMedCrossRefGoogle Scholar
  25. 25.
    Francis, B., John, T. R., Seebart, C., and Kaiser, I. I. (1991).Toxicon 29, 85–96.PubMedCrossRefGoogle Scholar
  26. 26.
    Laemmli, U. K. (1970).Nature 277, 680–685.CrossRefGoogle Scholar
  27. 27.
    Kawasaki, H., Emori, Y., and Suzuki, K. (1996).Analytical Biochem. 191, 332–336.CrossRefGoogle Scholar
  28. 28.
    Goodman, R. B., Foster, D. C., Mathewes, S. L., Osborn, S. G., Kuijper, J. L., Forstrom, J. W., and Martin, T. R. (1992).Biochemistry 31, 10,483–10,490.CrossRefGoogle Scholar
  29. 29.
    Waltz, A., Dewald, B., von Tscharner, V., and Baggiolini, M. (1991).J. Exp. Med. 174, 1355–1362.CrossRefGoogle Scholar
  30. 30.
    Begg, G. S., Pepper, D. S., Chesterman, C. N., and Morgan, F. J. (1978).Biochemistry 17, 1739–1744.PubMedCrossRefGoogle Scholar
  31. 31.
    Ciaglowski, R. E., Snow, J., and Walz, D. A. (1986).Arch. Biochem. Biophys. 250, 249–256.PubMedCrossRefGoogle Scholar
  32. 32.
    Oquendo, P., Alberta, J., Wen, D., Graycar, J. L., Derynck, R., and Stile, C. D. (1989).J. Biol. Chem. 264, 4133–4137.PubMedGoogle Scholar
  33. 33.
    Tekamp-Olson, P., Gallegos, C., Bauer, D., McClain, J., Sherry, B., Fabre, M., van Deventer, S., and Cerarni, A. (1990).J. Exp. Med. 172, 911–919.PubMedCrossRefGoogle Scholar
  34. 34.
    Matsushima, K., Morishita, K., Yoshimura, T., Lavu, S., Kobayashi, Y., Lew, W., Appella, E., Kung, H. F., Leonard, E. J., and Oppenheim, J. J. (1988).J. Exp. Med. 167, 1883–1893.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • M. Glaucia Teixeira
    • 1
    • 3
  • Kathy J. Austin
    • 1
  • David J. Perry
    • 1
  • Vern D. Dooley
    • 1
    • 4
  • Greg A. Johnson
    • 1
  • Brian R. Francis
    • 2
  • Thomas R. Hansen
    • 1
  1. 1.Reproductive Biology Program, Department of Animal ScienceUniversity of WyomingLaramie
  2. 2.Reproductive Biology Program, Department of Molecular BiologyUniversity of WyomingLaramie
  3. 3.School of PharmacyUniversity of WyomingLaramie
  4. 4.Equine ScienceNorthwest CollegePowell

Personalised recommendations