Annals of Biomedical Engineering

, Volume 25, Issue 1, pp 218–231 | Cite as

Mesh updating in fluid-structure interactions in biomechanics: An iterative method based on an uncoupled approach

  • Gabriele Dubini
  • Alberto Redaelli
Research Articles


In this study, a computational uncoupled approach to fluid-structure interaction problems in biofluid mechanics is presented. It is based on the finite element method and is applied to study the local fluid dynamics in two specific situations: the left ventricular ejection phase and the motion of an isolated red blood cell along a small artery. Particularly, the focus is on the algorithms developed to deal with mesh updating, because both examined districts are characterized by geometrical deformations of the fluid domain edges. This is currently a challenging issue in the application of computational fluid dynamics techniques to living systems, especially to the cardiovascular system. Although the chosen approach uses a commercial computational fluid dynamics package for the solution of the fluid domain, original algorithms have been developed to perform the boundary displacement calculations correctly, as well as the corresponding mesh updating. Results are reported and compared with available data in the literature pertinent to the two studied problems.


Computational fluid dynamics Cardiac mechanics Microcirculation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avanzolini, G., P. Barbini, A. Cappello, and G. Cevenini. CADCS simulation of the closed-loop cardiovascular system.Int. J. Biomed. Comput. 22:39–49, 1988.PubMedCrossRefGoogle Scholar
  2. 2.
    Buzzi Ferraris, G., and E. Tronconi. Bunsli—a Fortran program for solution of system of nonlinear algebraic equations.Comput. Chem. Eng. 2:129–141, 1986.CrossRefGoogle Scholar
  3. 3.
    Erbel, R., B. Henkel, C. Ostlander, W. Clas, R. Brennecke, and J. Meyer. Normalwerte fur die zweidimensionale Echokardiographie.Deut. Med. Wochenschr. 110:123–128, 1985.CrossRefGoogle Scholar
  4. 4.
    Falsetti, H. L., M. S. Verani, C. J. Chen, and J. A. Cramer. Regional pressure differences in the left ventricle.Cathet. Cardiovasc. Diagn. 6:123–134, 1980.PubMedCrossRefGoogle Scholar
  5. 5.
    Fauci, L. J. Peristalting pumping of solid particles.Comput. Fluids 21:583–598, 1992.CrossRefGoogle Scholar
  6. 6.
    Georgiadis J. G., W. Mingyu, and A. Pasipoularides. Computational fluid dynamics of left ventricular ejection.Ann. Biomed. Eng. 20:81–97, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Goldsmith, H. L. Red cell motions and wall interactions in tube flow.Fed. Proc. 30:1578–1588, 1971.PubMedGoogle Scholar
  8. 8.
    Gonzalez, E., and R. T. Schoephoerster. A simulation of three-dimensional systolic flow dynamics in a spherical ventricle: effects of abnormal wall motion.Ann. Biomed. Eng. 24:48–57, 1996.PubMedGoogle Scholar
  9. 9.
    Guiliani, S. An algorithm for continuous rezoning of the hydrodynamic grid in ALE computer codes.Nucl. Eng. Des. 72:205–212, 1982.CrossRefGoogle Scholar
  10. 10.
    Jeffery, G. B. On the motion of ellipsoidal particles immersed in a viscous fluid.Proc. R. Soc. Lond. A102:162–179, 1922.Google Scholar
  11. 11.
    Montevecchi, F. M., and R. Pietrabissa. A model of multicomponent cardiac fibre.J. Biomech. 20:365–370, 1987.PubMedCrossRefGoogle Scholar
  12. 12.
    Pasipoularides, A. Clinical assessment of ventricular ejection dynamics with and without outflow obstruction.J. Am. Coll. Cardiol. 15:859–882, 1990.PubMedCrossRefGoogle Scholar
  13. 13.
    Pasipoularides, A., J.P. Murgo, J.W. Miller, and W.E. Craig. Nonobstructive left ventricular ejection pressure gradients in man.Circ. Res. 61:220–227, 1987.PubMedGoogle Scholar
  14. 14.
    Peskin, C.S., and D.M. McQueen. Cardiac fluid dynamics.Crit. Rev. Biomed. Eng. 20:451–459, 1992.PubMedGoogle Scholar
  15. 15.
    Pietrabissa, R., F.M. Montevecchi, and R. Fumero. Mechanical characterization of the model of multi-component cardiac fibre.J. Biomed. Eng. 13:407–414, 1991.PubMedCrossRefGoogle Scholar
  16. 16.
    Schoephoerster, R. T., L. C. Silva, and G. Ray. Evaluation of left ventricular function based on simulated systolic flow dynamics computed from regional wall motion.J. Biomech. 27:125–136, 1994.PubMedCrossRefGoogle Scholar
  17. 17.
    Secomb, T. W., and R. Hsu. Non-axisymmetric motion of rigid closely fitting particles in fluid-filled tubes.J. Fluid Mech. 257:403–420, 1993.CrossRefGoogle Scholar
  18. 18.
    Segré, G., and A. Silberberg. Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation.J. Fluid Mech. 14:136–157, 1962.CrossRefGoogle Scholar
  19. 19.
    Semelka, R. C., E. Tomei, S. Wagner, J. Mayo, C. Kondo, J. Suzuki, G. R. Caputo, and C. B. Higgins. Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR Imaging.Radiology 174: 763–768, 1990.PubMedGoogle Scholar
  20. 20.
    Skalak, R., P. H. Chen, and S. Chien. Effect of hematocrit and rouleaux on apparent viscosity in capillaries.Biorheology 9:67–82, 1972.PubMedGoogle Scholar
  21. 21.
    Sponitz, H. M., H. Sonnenblick, and D. Spiro. Relation of ultrastructure to function in intact heart. Sarcomere structure relative to pressure-volume curves of intact left ventricle of dog and cat.Circ. Res. 18:49–66, 1966.Google Scholar
  22. 22.
    Sugihara-Seki, M. Motion of a doublet of two cylinders in contact in a narrow channel flow.J. Biomech. Eng. 114:546–549, 1992.PubMedGoogle Scholar
  23. 23.
    Sugihara-Seki, M. The motion of an elliptical cylinder in channel flow at low Reynolds numbers.J. Fluid Mech. 257: 575–596, 1993.CrossRefGoogle Scholar
  24. 24.
    Sugihara-Seki, M. The motion of two cylinders in contact in channel flow.Biorheology 31:1–10, 1994.PubMedGoogle Scholar
  25. 25.
    Taylor, T. W., and T. Yamaguchi. Realistic three dimensional left ventricular ejection determined from computational fluid dynamics.Med. Eng. Phys. 17:602–608, 1995.PubMedCrossRefGoogle Scholar
  26. 26.
    Uijttewaal, W. S., E.-J. Nijhof, and R. M. Heethaar. Lateral migration of blood cells and microspheres in two-dimensional Poiseuille flow: a laser-Doppler study.J. Biomech. 27:35–42, 1994.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang, C. Y., and H. Sonnenblick. Dynamic pressure distribution inside a spherical ventricle.J. Biomech. 12:9–12, 1979.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang, S. K., and N. H. Hwang. On the transport of a suspended particle in flow through the entrance region of a tube.Biorheology 31:549–563, 1994.PubMedGoogle Scholar
  29. 29.
    Wong, A. Y. Application of Huxley’s sliding filament theory to the mechanics of normal and hypertrophical cardiac muscle. In: Cardiac mechanics, edited by I. Mirsky. New York: John Wiley, 1974, pp. 411–437.Google Scholar
  30. 30.
    Yoganathan, A.P., J.D. Lemmon, Y.H. Kim, P.G. Walker, R.A. Levine, and C.C. Vesier. A computational study of a thin-walled three-dimensional left ventricle during early systole.J. Biomech. Eng. 116:307–314, 1994.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 1997

Authors and Affiliations

  • Gabriele Dubini
    • 2
    • 1
  • Alberto Redaelli
    • 2
    • 1
  1. 1.CeBITeCPolitecnico di Milano & IRCCS San RaffaeleMilanItaly
  2. 2.Dipartimento di BioingegneriaPolitecnico di MilanoMilanItaly

Personalised recommendations