A model of fluid, erythrocyte, and solute transport in the lung

  • Robert J. Roselli
  • Gyerae Tack
  • Thomas R. Harris
Research Articles


A mathematical model of fluid, solute, and red cell transport in the lung has been developed that includes the effects of simultaneous changes in lung vascular and interstitial volumes. The model provides separate arterial, microvascular, and venous pulmonary regions and a systemic vascular region in addition to a pulmonary interstitial compartment. Pressure, volume, hematocrit, flow, and concentration of up to 12 solutes and tracers can be computed in each compartment. Computer code is written in the C programming language, with Microsoft Excel serving as a user interface. Implementation is currently on PC-486 microcomputer systems, but the core program can easily be moved to other computer systems. The user can select different models for the blood-interstitial barrier (e.g. multiple pore, nonlinear Patlak equation), osmotic pressure-concentration relationships (e.g., Nitta, Navar-Navar), solute reflection coefficients, interstitial macromolecule exclusion, or lymph barrier characteristics. Each model parameter or a combination of parameters can be altered with time in a predetermined fashion. The model is particularly useful in interpreting lung experimental data where simultaneous changes occur in vascular and extravascular compartments. Several applications are presented and discussed, including interpretation of optical filtration experiments, venous occlusion experiments, external detection of macromolecular exchange, and blood-lymph studies that use exogenous tracers. A number of limitations of the model are identified and improvements are proposed. A major strength of the model is that it is specifically designed to incorporate newly discovered relationships as the field of lung physiology expands.


Lung fluid balance Transvascular solute exchange 


  1. 1.
    Abernathy, V. J., N. A. Pou, T. L. Wilson, R. E. Parker, S. N. Mason, J. A. Clanton, L. J. Baudendistel, and R. J. Roselli. Noninvasive measures of radiolabeled dextran transport in in situ rabbit lung.J. Nucl. Med. 36:1436–1441, 1995.PubMedGoogle Scholar
  2. 2.
    Arturson, G., and G. Wallenius. The intravascular persistence of dextran of different molecular sizes in normal humans.Scand. J. Clin. Lab. Invest. 1:76–80, 1964.Google Scholar
  3. 3.
    Barman, S. A., and A. E. Taylor. Histamine’s effect on pulmonary vascular resistance and compliance at elevated tone.Am. J. Physiol. 257:H618-H625, 1989.PubMedGoogle Scholar
  4. 4.
    Bert, J. L., and R. H. Pearce. The interstitium and microvascular exchange. In:Handbook of Physiology. The Cardiovascular System. IV. Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: American Physiological Society, 1984, pp. 521–547.Google Scholar
  5. 5.
    Blake, L., and N. Staub. Pulmonary vascular transport in sheep: a mathematical model.Microvasc Res. 12:197–220, 1976.PubMedCrossRefGoogle Scholar
  6. 6.
    Cope, D. K., F. Grimbert, J. M. Downey, and A. E. Taylor. Pulmonary capillary pressure: a review.Crit. Care Med. 20:1043–1056, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Curry, F. R., and C. C. Michel. A fiber matrix model of capillary permeability.Microvasc. Res. 20:96–99, 1980.PubMedCrossRefGoogle Scholar
  8. 8.
    Dawson, C. A., J. H. Linehan, D. A. Rickaby, and G. S. Krenz. Effect of vasoconstriction on longitudinal distribution of pulmonary vascular pressure and volume.J. Appl. Physiol. 70:1607–1616, 1991.PubMedGoogle Scholar
  9. 9.
    Dawson, C. A., D. A. Rickaby, J. H. Linehan, and T. A. Bronikowsky. Distributions of vascular volume and complicance in the lung.J. Appl. Physiol. 64:266–273, 1988.PubMedGoogle Scholar
  10. 10.
    Fung, Y. C., and H. T. Tang. Solute distribution in the flow in a channel bounded by porous layers: a model of the lung.J. Appl. Mech. 42:531–535, 1975.Google Scholar
  11. 11.
    Fung, Y. C., and R. T. Yen. A new theory of pulmonary blood flow in zone 2 condition.J. Appl. Physiol. 60:1638–1650, 1986.PubMedGoogle Scholar
  12. 12.
    Gallenger, H., D. Garewal, R. E. Drake, and J. C. Gabel. Estimation of lymph flow by relating lymphatic pump function to passive flow curves.Lymphology 26:56–60, 1993.Google Scholar
  13. 13.
    Gorin, A. B., W. J. Weidner, R. Demling, and N. C. Staub. Noninvasive measurement of pulmonary transvascular protein flux in sheep.J. Appl. Physiol. 45:225–233, 1978.PubMedGoogle Scholar
  14. 14.
    Harris, N. R., R. E. Parker, N. A. Pou, and R. J. Roselli. Canine pulmonary filtration coefficient calculated from optical, radioisotope, and weight measurements.J. Appl. Physiol. 73:2648–2661, 1992.PubMedGoogle Scholar
  15. 15.
    Harris, T. R., and R. J. Roselli. A theoretical model of protein, fluid, and small molecule transport in the lung.J. Appl. Physiol. 50:1–14, 1981.PubMedGoogle Scholar
  16. 16.
    Lanken, P. N., J. H. Hansen-Flaschen, P. M. Sampson, G. G. Pietra, F. R. Haselton, and A. P. Fishman. Passage of uncharged dextrans from blood to lung lymph in awake sheep.J. Appl. Physiol. 59:580–591, 1985.PubMedGoogle Scholar
  17. 17.
    Levick, J. R. An analysis of the interaction between interstitial plasma protein, interstitial flow, and fenestral filtration and its application to synovium.Microvasc. Res. 47:90–125, 1994.PubMedCrossRefGoogle Scholar
  18. 18.
    Linehan, J. H., and C. A. Dawson. A three compartment model of the pulmonary vasculature: effects of vasoconstriction.J. Appl. Physiol. 55:923–928, 1983.PubMedGoogle Scholar
  19. 19.
    Linehan, J. H., C. A. Dawson, and D. A. Rickaby. Distribution of vascular resistance and compliance in a dog lung lobe.J. Appl. Physiol. 53:158–168, 1982.PubMedGoogle Scholar
  20. 20.
    Linehan, J. H., C. A. Dawson, D. A. Rickaby, and T. A. Bronikowski. Pulmonary vascular compliance and viscoelasticity.J. Appl. Physiol. 61:1802–1814, 1986.PubMedGoogle Scholar
  21. 21.
    Linehan, J. H., S. T. Haworth, L. D. Nelin, G. S. Krenz, and C. A. Dawson. A simple distensible vessel model for interpreting pulmonary vascular pressure-flow curves.J. Appl. Physiol. 73:987–994, 1992.PubMedGoogle Scholar
  22. 22.
    McNamee, J. E. Restricted dextran transport in the sheep lung lymph preparation.J. Appl. Physiol. 52:585–590, 1982.PubMedGoogle Scholar
  23. 23.
    McNamee, J. E., and N. C. Staub. Pore models of sheep lung microvascular barrier using new data on protein tracers.Microvasc. Res. 18:229–244, 1979.PubMedCrossRefGoogle Scholar
  24. 24.
    Ogston, A. G., B. N. Preston, and J. D. Wells. On the transport of compact molecules through solutions of chainpolymers.Proc. R. Soc. Lond. (A) 333:317–336, 1973.CrossRefGoogle Scholar
  25. 25.
    Paine, P. L., and P. Scherr. Drag coefficients for movements of rigid spheres through liquid filled pores.Biophys. J. 15:1087–1091, 1975.PubMedCrossRefGoogle Scholar
  26. 26.
    Pappenheimer, J. R., E. M. Renkin, and L. M. Borrero. Filtration, diffusion and molecular sieving through peripheral capillary membranes.Am. J. Physiol. 167:13, 1951.PubMedGoogle Scholar
  27. 27.
    Parker, J. C., M. I. Townsley, and J. T. Cartledge. Lung edema increases transvascular filtration rate but not filtration coefficient.J. Appl. Physiol. 66:1553–1560, 1989.PubMedGoogle Scholar
  28. 28.
    Patlak, C. S., D. A. Goldstein, and J. F. Hoffman. The flow of solute and solvent across a two-membrane system.J. Theor. Biol. 5:426–442, 1963.PubMedCrossRefGoogle Scholar
  29. 29.
    Pou, N. A., R. J. Roselli, R. E. Parker, J. A. Clanton, and T. R. Harris. Measurement of fluid volumes and albumin exclusion in sheep lungs.J. Appl. Physiol. 67:1323–1330, 1989.PubMedGoogle Scholar
  30. 30.
    Reddy, N. P., T. A. Krouskrop, and P. H. Newell, {jrJr.} A note on the mechanisms of lymph flow through the terminal lymphatics.Microvasc. Res. 10:2104–2106, 1975.CrossRefGoogle Scholar
  31. 31.
    Rippe, B., J. C. Parker, M. I. Townsley, N. A. Mortillaro, and E. E. Taylor. Segmental vascular resistances and compliances in dog lung.J. Appl. Physiol. 62:1206–1215, 1987.PubMedGoogle Scholar
  32. 32.
    Roselli, R. J., S. R. Coy, and T. R. Harris. Models of lung transvascular fluid and protein transport.Ann. Biomed. Eng. 15:127–138, 1987.PubMedCrossRefGoogle Scholar
  33. 33.
    Roselli, R. J., and T. R. Harris. Lung fluid and macromolecular transport. In:Respiration Physiology: An Analytical Approach, edited by H. K. Chang and M. Paiva. New York: Marcel Dekker, 1989, pp. 633–735.Google Scholar
  34. 34.
    Roselli, R. J., R. E. Parker, and T. R. Harris. A model of unsteady-state transvascular fluid and protein transport in the lung.J. Appl. Physiol. Respir. Environ. Exercise Physiol. 56:1389–1402, 1984.Google Scholar
  35. 35.
    Roselli, R. J., and W. R. Riddle. Analysis of non-invasive microvascular macromolecular transport measurements in the lung.J. Appl. Physiol. 67:2343–2350, 1989.PubMedGoogle Scholar
  36. 36.
    Schnitzer, J. E. Fiber matrix model reanalysis: matrix exclusion limits define effective pore radius describing capillary and glomerular permselectivity.Microvasc. Res. 43:342–346, 1992.PubMedCrossRefGoogle Scholar
  37. 37.
    Tack, G., R. J. Roselli, K. A. Overholser, and T. R. Harris. The use of Microsoft Excel as a user interface for biological simulations.Comp. Biomed. Res. 28:24–37, 1995.CrossRefGoogle Scholar
  38. 38.
    Weinbaum, S., R. Tsay, and F. E. Curry. A three-dimensional junction-pore-matrix model for capillary permeability.Microvasc. Res. 44:85–111, 1992.PubMedCrossRefGoogle Scholar
  39. 39.
    Wolf, M. B., P. D. Watson, and D. R. C. Scott, {jrII}. The integral mass balance method for determination of the solvent drag reflection coefficient.Am. J. Physiol. 253:H194-H204, 1987.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 1997

Authors and Affiliations

  • Robert J. Roselli
    • 1
  • Gyerae Tack
    • 1
  • Thomas R. Harris
    • 1
  1. 1.Department of Biomedical EngineeringVanderbilt University, School of EngineeringNashvilleUSA

Personalised recommendations