Glass Physics and Chemistry

, Volume 26, Issue 3, pp 205–216 | Cite as

Myuller’s concept of the viscous flow: Prospects for its evolution

  • M. D. Bal’makov
Proceedings of the International Conference “Glasses and Solid Electrolytes” On the Occasion of the 275th Anniversary of the St. Petersburg University and Centenary of Professor Rudolf Ludvigovich Myuller (St. Petersburg, Russia, May 17–19, 1999)


The salient points of Myuller’s concept of viscous flow are set forth. The concept is analyzed in terms of the basic principles of quantum mechanics and statistical thermodynamics. Particular emphasis is placed on the activation entropy of the viscous flow S η * and the glass transition entropy ΔS g . It is demonstrated that, when the tunnel penetration gives way to over-the-barrier passage, the temperature dependences are not described by the Arrhenius equation. The information aspect of the discrete transformations of chemical bonds is described in detail.


Glass Transition Atomic Nucleus Viscous Flow Vitreous State Glass Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Myuller, R.L., Chemical Features of Polymeric Glass-Forming Materials and the Nature of Glass Formation, inStekloobraznoe sostoyanie (The Vitreous State), Moscow: Akad. Nauk SSSR, 1960, pp. 61–71.Google Scholar
  2. 2.
    Myuller, R.L.,Elektroprovodnost’ stekloobraznykh veshchestv (Electric Conductivity of Vitreous Compounds), Leningrad: Leningr. Gos. Univ., 1968.Google Scholar
  3. 3.
    Myuller, R.L., The Solid State Chemistry and the Vitreous State, inKhimiya tverdogo tela (The Solid State Chemistry), Leningrad: Leningr. Gos. Univ., 1965, pp. 9–63.Google Scholar
  4. 4.
    Myuller, R.L., The Valence Theory of Viscosity and Flow Behavior in the Critical Temperature Range for High-Melting Glass-Forming Materials,Zh. Prikl. Khim. (Leningrad), 1955, vol. 28, no. 10, pp. 1077–1087.Google Scholar
  5. 5.
    Myuller, R.L., The Nature of Activation Energy and Experimental Data on the How Behavior of High-Melting Glass-Forming Materials,Zh. Prikl. Khim. (Leningrad), 1955, vol. 28, no. 4, pp. 363–371.Google Scholar
  6. 6.
    Myuller, R.L., On the Problem of Interrelation between the Electric Conductivity and the Viscosity of Glasses,Zh. Prikl, Khim. (Leningrad), 1959, vol. 1, no. 2, pp. 346–347.Google Scholar
  7. 7.
    Glasstone, S., Laidler, K.J., and Eyring, H.,The Theory of Rate Processes, New York: Princeton Univ., 1941. Translated under the titleTeoriya absolyutnykh skorostei reaktsii, Moscow: Inostrannaya Literatura, 1948.Google Scholar
  8. 8.
    Mazurin, O.V.,Steklovanie (Glass Transition), Leningrad: Nauka, 1986.Google Scholar
  9. 9.
    Bal’makov, M.D., Configurational Entropy of the Vitreous State,Fiz. Khim. Stekla, 1996, vol. 22, no. 4, pp. 485–501 [Glass Phys. Chem. (Engl. transi.), 1996, vol. 22, no. 4, pp. 344-355].Google Scholar
  10. 10.
    Bal’makov, M.D., Blinov, L.N., and Pocheptseva, N.S., Entropy of Glass Transition and Polymorphism,Tech. Fiz. Lett., 1998, vol. 24, no. 2, pp. 86–88.CrossRefGoogle Scholar
  11. 11.
    Bal’makov, M.D., Glass Transition and Some Problems of Nonequilibrium Thermodynamics,Fiz. Khim. Stekla, 1999, vol. 25, no. 3, pp. 309–326 [Glass Phys. Chem. (Engl. transi.), 1999, vol. 25, no. 3, pp. 233–245].Google Scholar
  12. 12.
    Nemilov, S.V., The Valence-Configurational Theory of Viscous Flow of Supercooled Glass-Forming Liquids and Its Experimental Validation,Fiz. Khim. Stekla, 1978, vol. 4, no. 2, pp. 129–148.Google Scholar
  13. 13.
    Bazarov, I.P.,Termodinamika (Thermodynamics), Moscow: Vysshaya Shkola, 1983.Google Scholar
  14. 14.
    Nemilov, S.V., Relation between Configurational Entropy and Activation Entropy for Viscous Flow of Supercooled Glass-Forming Liquids,Fiz. Khim. Stekla, 1976, vol. 2, no. 3, pp. 193–203.Google Scholar
  15. 15.
    Bibikov, Yu.N.,Obshchii kurs obyknovennykh differentsial’nykh uravnenii (A General Course of Ordinary Differential Equations), Leningrad: Leningr. Gos. Univ., 1981.Google Scholar
  16. 16.
    Nemilov, S.V.,Thermodynamic and Kinetic Aspects of the Vitreous State, Boca Raton: CRC, 1995.Google Scholar
  17. 17.
    Filipovich, V.N., The Vacancy-Diffusion Theory of the Viscosity of Glasses ant Its Application to Silica Glass,Fiz. Khim. Stekla, 1975, vol. 1, no. 3, pp. 256–264.Google Scholar
  18. 18.
    Pryanishnikov, V.P., Covalent Model of Silica and General Regularities of Glass Formation Process, inStekloobraznoe sostoyanie (The Vitreous State), Leningrad: Nauka, 1971, pp. 55–60.Google Scholar
  19. 19.
    Shultz, M.M., On the Chemical Structure of Glass-Forming Melts and Glasses, inStekloobraznoe sostoyanie (The Vitreous State), Leningrad: Nauka, 1983, pp. 10–18.Google Scholar
  20. 20.
    Kokorina, V.F., The Influence of Chemical Bond on the Glass Formation and Glass Properties, inStekloobraznoe sostoyanie (The Vitreous State), Leningrad: Nauka, 1971, pp. 87–92.Google Scholar
  21. 21.
    Borisova, Z.U.,Khal’kogenidnye poluprovodnikovye stekla (Chalcogenide Semiconductor Glasses), Leningrad: Leningr. Gos. Univ., 1983.Google Scholar
  22. 22.
    Shkol’nikov, E.V., On the Interrelation between Structural-Chemical Features and Kinetic Parameters of Crystallization, inStekloobraznoe sostoyanie (The Vitreous State), Leningrad: Nauka, 1983, pp. 131–135.Google Scholar
  23. 23.
    Baidakov, L.A., Glass-Forming Ability: A Quantitative Criterion with Allowance for the Nature of Chemical Bonding,Fiz. Khim. Stekla, 1994, vol. 20, no. 3, pp. 341–348 [Glass Phys. Chem. (Engl. transl.), 1994, vol. 20, no. 3, pp. 232–236].Google Scholar
  24. 24.
    Blinov, L.N., Magnetic Properties of Chalcogenide Glasses (A Review),Zh. Prikl. Khim. (S.-Peterburg), 1999, vol. 72, no. 7, pp. 1057–1064.Google Scholar
  25. 25.
    Pronkin, A.A., On the Problem of Transport Number for Sodium Ions in Aluminosilicate Glasses,Zh. Prikl. Khim. (Leningrad), 1964, vol. 37, no. 4, pp. 887–888.Google Scholar
  26. 26.
    Nikitin, E.E.,Teoriya elementarnykh atomno-moleku-lyarnykh protsessov v gazakh (The Theory of Elementary Atomic-Molecular Processes in Gases), Moscow: Khimiya, 1970.Google Scholar
  27. 27.
    Klinger, M.I., Anomalous Dynamic (Low-Temperature) and Electronic Properties of Glasses,Fiz. Khim. Stekla, 1989, vol. 15, no. 3, pp. 377–396.Google Scholar
  28. 28.
    Malinovsky, V.K., Novikov, V.N., and Sokolov, A.P., Low-Frequency Raman Scattering in Vitreous Materials,Fiz. Khim. Stekla, 1989, vol. 15, no. 3, pp. 331–365.Google Scholar
  29. 29.
    Malinovsky, V.K., Novikov, V.N., and Sokolov, A.P., Features of Dynamics and Spatial Correlations in the Genesis of the Vitreous State,Fiz. Khim. Stekla, 1996, vol. 22, no. 3, pp. 204–221 [Glass Phys. Chem. (Engl. transl.), 1996, vol. 22, no. 3, pp. 152–164].Google Scholar
  30. 30.
    Born, M. and Oppenheimer, J.R., Zur Quantentheorie der Molekeln,Ann. Phys. (Leipzig), 1927, vol. 84, no. 20, pp. 457–483.CrossRefGoogle Scholar
  31. 31.
    Bal’makov, M.D., Statistical Properties of Many-Minimum Potential Model, Vestn. Leningr. Univ., 1985, no. 18, pp. 105-107.Google Scholar
  32. 32.
    Bal’makov, M.D., Evolution of R.L. Myuller’s Concept of the Glass-Forming Ability of Melts,Fiz. Khim. Stekla, 1992, vol. 18, no. 3, pp. 1–22 [Sov. J. Glass Phys. Chem. (Engl. transl.), 1992, vol. 18, no. 3, pp. 193–202].Google Scholar
  33. 33.
    Bal’makov, M.D.,Stekloobraznoe sostoyanie veshchestva (The Vitreous State of the Matter), St. Petersburg: St. Petersburg Gos. Univ., 1996.Google Scholar
  34. 34.
    Sanditov, D.S. and Bartenev, G.M.,Fizicheskie svoistva neuporyadochennykh Struktur (Physical Properties of Disordered Structures), Novosibirsk: Nauka, 1982.Google Scholar
  35. 35.
    Anderson, P.W., Halperin, B.I., and Varma, CM., Anomalous Low-Temperature Thermal Properties of Glasses and Spin-Glasses,Philos. Mag., 1972, vol. 25, no. 1, pp. 1–9.CrossRefGoogle Scholar
  36. 36.
    Bal’makov, M.D., The Concept of Small Structural Transformations, in“Novye idei v fizike stekla.” Vsesoyuznyi nauchnyi seminar, posvyashchennyi pamyati prof essora V. V. Tarasova (All-Union Scientific Workshop Dedicated to the Memory of Prof. V.V. Tarasov “New Ideas in the Glass Physics”), Moscow: VNIIESM, 1987, vol. 1, pp. 67–74.Google Scholar
  37. 37.
    Kolmogorov, A.N. and Fomin, S.V.,Elementy teorii funktsii i funktsional’nogo analiza (Elements of Function Theory and Functional Analysis), Moscow: Nauka, 1981.Google Scholar
  38. 38.
    Grey, H.,Electrons and Chemical Bonding, New York: Benjamin, 1965. Translated under the titleElektrony i khimicheskaya svyaz’, Moscow: Mir, 1967.Google Scholar
  39. 39.
    Bal’makov, M.D., On the Entropy Change in Nonequilibrium State,Vestn. St. Petersburg Gos. Univ., Ser. 4: Fiz, Khim., 1999, issue 2 (no. 11), pp. 52-62.Google Scholar
  40. 40.
    Bal’makov, M.D., Information Capacity of Condensed Systems,Usp. Fiz. Nauk, 1999, vol. 169, no. 11, pp. 1273–1280 [Phys. Usp. (Engl. transl.), 1999, vol. 42, no. 11, pp. 1167–1173].Google Scholar
  41. 41.
    Bal’makov, M.D., Blinov, L.N., and Kul’mas, M.N., Microscopic Approach to Information Recording in Condensed Systems,Nauchno-Tekh. Vedomosti St. Petersburg Gos. Univ., 1999, no. 2 (16), pp. 36-39.Google Scholar
  42. 42.
    Kadomtsev, B.B.,Dinamika i informatsiya (Dynamics and Information), Moscow: Uspekhi Fizicheskikh Nauk, 1999.Google Scholar
  43. 43.
    Kadomtsev, B.B. and Kadomtsev, M.B., Wave Function Collapses,Usp. Fiz. Nauk, 1996, vol. 166, no. 6, pp. 651–659.Google Scholar
  44. 44.
    Aleskovskii, V.B.,Khimiya nadmolekulyarnykh soedinenii (Chemistry of Supramolecular Compounds), St. Petersburg: St. Petersburg Gos. Univ., 1996.Google Scholar
  45. 45.
    Bal’makov, M.D., Production of Information in Microscopic Processes,Vestn. St. Petersburg Gos. Univ., Ser. 4: Fiz., Khim., 1998, issue 2 (no. 11), pp. 137-139.Google Scholar
  46. 46.
    Bal’makov, M.D., Information Aspects of Chemical Copying,Vestn. St. Petersburg Gos. Univ., Ser. 4: Fit, Khim., 1999, issue 1 (no. 4), pp. 43-52.Google Scholar
  47. 47.
    Kul’mas, M.N., Bal’makov, M.D., and Blinov, L.N., On Certain Aspects of Information Recording in Condensed Systems, inTrudy VI Mezhdunarodnoi nauchno-metodicheskoi konferentsii “Vysokie intellektual’nye tekhnologii obrazovaniya i nauki-” (Proc. VI Int. Sci. Methodical Conf. “High Intellectual Technologies of Education and Science“), St. Petersburg: St. Petersburg Gos. Univ., 1999, p. 194.Google Scholar
  48. 48.
    Bal’makov, M.D., Production of Information in Chemical Processes,Tezisy dokladov II Mezhdunarodnoi konferentsii “Khimiya vysokoorganizovannykh veshchestv i nauchnye osnovy nanotekhnologii” (Abstracts of Papers, II Int. Conf. “Chemistry of Highly Organized Substances and Scientific Principles of Nanotechnology”), St. Petersburg, 1998, pp. 7–8.Google Scholar
  49. 49.
    Shklovskii, B.I. and Efros, A.L.,Elektronnye svoistva legirovannykh poluprovodnikov (Electronic Properties of Doped Semiconductors), Moscow: Nauka, 1979.Google Scholar
  50. 50.
    Blokhintsev, D.I.,Osnovy kvantovoi mekhaniki (The Principles of Quantum Mechanics), Moscow: Vysshaya Shkola, 1961.Google Scholar
  51. 51.
    Landau, L.D. and Lifshitz, E.M.,Kvantovaya mekhanika. Nerelyativistskaya teoriya (Quantum Mechanics: Nonrelativistic Theory), Moscow: Fizmatgiz, 1963.Google Scholar
  52. 52.
    Murin, I.V., Glumov, O.V., Gunsser, W, and Karus, M., Transport Processes in Fluoride Crystals under High Pressure,Radiat. Eff. Defects Solids, 1995, vol. 137, pp. 251–254.CrossRefGoogle Scholar
  53. 53.
    Privalov, A.F., Murin, I.V., and Vieth, H.-M., Disorder of Ionic Mobility in Crystalline Superionic Conductors Characterized by 19 F-NMR,Solid State Ionics, 1997, vols. 101–103, pp. 393–396.Google Scholar
  54. 54.
    Tverjanovich, A.S., Balmakov, M.D., and Tveryanovich, Yu.S., Activation Energy of Relaxation Time and Viscosity of Chalcogenide Glasses,Extended Abstracts, XI Int. Symposium on Non-Oxide and New Optical Glasses, Sheffield (UK), 1998, pp. 334-339.Google Scholar
  55. 55.
    Nemilov, S.V. and Petrovskii, G.T., A Study of Viscosity of Glasses in Selenium-Arsenic System,Zh. Prikl. Khim. (Leningrad), 1963, vol. 36, no. 5, pp. 977–981.Google Scholar
  56. 56.
    Chernov, A.P., Dembovsky, S.A., and Makhova, V.I., Viscosity and Structure of Glasses in the As2X3-AsI3 Systems,Izv. Akad. Nauk SSSR, Neorg. Mater., 1970, vol. 6, no. 4, pp. 823–825.Google Scholar
  57. 57.
    Orlova, G.M., Udalov, S.S., and Manakhova, E.N., Elastic and Thermal Properties of Glasses in the AsSe-TlSe and As2Se3-Tl2Se Systems,Fiz. Khim. Stekla, 1985, vol. 11, no. 2, pp. 215–218.Google Scholar
  58. 58.
    Kadoun, A., Chaussemy, G., Fornazero, J., and Mackowski, J.M., Kinematic Viscosity of AsxSe1-x Glass Forming Liquids,J. Non-Cryst. Solids, 1983, vol. 57, no. 1, pp. 101–108.CrossRefGoogle Scholar
  59. 59.
    Ananichev, V.A., Demidov, A.I., and Kudryavtsev, A.N., Thermal Expansion Coefficient and Density of lass-Forming Melts in the As2S3-TlAsS2 and As2Se3- TlAsSe2 Systems,Fiz. Khim. Stekla, 1985, vol. 11, no. 2, pp. 224–227.Google Scholar
  60. 60.
    Nemilov, S.V., Genetically Predetermined Self-Organization of Low-Energy Excitations in Glasses and the Prospects of Neural-Network Modeling,Fiz. Khim. Stekla, 1998, vol. 24, no. 3, pp. 390–404 [Glass Phys. Chem. (Engl. transl.), 1998, vol. 24, no. 3, pp. 268–279].Google Scholar
  61. 61.
    Shannon, C.,Raboty po teorii informatsii i kibernetiki (Papers on the Information and Cybernetics Theory), Moscow: Inostrannaya Literatura, 1963.Google Scholar
  62. 62.
    Poplavskii, R.P.,Termodinamika informatsionnykh protsessov (Thermodynamics of Information Processes), Moscow: Nauka, 1981.Google Scholar
  63. 63.
    Blyumenfel’d, L.A., Information, Thermodynamics, and Construction of Biological Systems,Soros Obraz. Zh., 1996, no. 7, pp. 88–92.Google Scholar
  64. 64.
    Yoffe, A.D., Low-Dimensional Systems: Quantum Size Effects and Electronic Properties of Semiconductor Microcrystallites (Zero-Dimensional Systems) and Some Quasi-Two-Dimensional Systems,Adv. Phys., 1993, vol. 42, no. 2, pp. 173–266.CrossRefGoogle Scholar
  65. 65.
    Bal’makov, M.D., Blinov, L.N., and Kul’mas, M.N., On the Formation of Nanostructures in Condensed Systems, inFundamental’nye issledovaniya vtekhnicheskikh universitetakh. Materialy III Vserossiskoi nauchno-tekhnicheskoi konferentsii (Basic Research in Technical Universities, Proc. III All-Russia Scientific and Engineering Conf.), St. Petersburg: St. Petersburg Gos. Univ., 1999, p. 137.Google Scholar
  66. 66.
    Careri, G.,Ordine e disordine nella materia, Rome: Laterza & Figli Spa, 1982. Translated under the titlePoryadok i besporyadok vstrukture materii, Moscow: Mir, 1985.Google Scholar
  67. 67.
    Blinov, L.N., Bal’makov, M.D., and Pocheptsova, N.S., On the Superconductivity of Disordered Systems with Reduced Configurational Entropy,Pis’ma Zh. Tekh. Fiz., 1996, vol. 22, no. 22, pp. 69–73.Google Scholar
  68. 68.
    Klyshko, D.N., Basic Concepts of Quantum Physics from Operational Viewpoint,Usp. Fiz. Nauk, 1998, vol. 168, no. 9, pp. 975–1015.Google Scholar
  69. 69.
    Menskii, M.B., Decoherence Phenomenon and the Theory of Continuous Quantum Measurements,Usp. Fiz. Nauk, 1998, vol. 168, no. 9, pp. 1017–1035.Google Scholar
  70. 70.
    Kilin, S.Ya., Quantum Information,Usp. Fiz. Nauk, 1999, vol. 169, no. 5, pp. 507–527.CrossRefGoogle Scholar
  71. 71.
    Von Oppen, G., Objects and Environment,Usp. Fiz. Nauk, 1996, vol. 166, no. 6, pp. 661–667.Google Scholar
  72. 72.
    Ivanitskii, G.R., Medvinskii, A.B., Deev, A.A., and Tsyganov, M.A., From “Maxwell Demon” to Self-Organization of Processes in Living Systems,Usp. Fiz. Nauk, 1998, vol. 168, no. 11, pp. 1221–1233.Google Scholar
  73. 73.
    Klimontovich, Yu.L., Entropy and Information of Open Systems,Usp. Fiz. Nauk, 1999, vol. 169, no. 4, pp. 443–452.Google Scholar
  74. 74.
    Nemilov, S.V., The Possibilities of Modeling Neural Networks in the Framework of Thermodynamics of Genetically Disordered Systems (Glasses),J. Biol. Phys., 1998, vol. 24, no. 1, pp. 41–58.CrossRefGoogle Scholar
  75. 75.
    Bal’makov, M.D., Blinov, L.N., Murin, I.V., and Pocheptsova, N.S., Microscopic Principles of Information Recording in Condensed Media,Pis’ma Zh. Tekh. Fiz., 1999, vol. 25, no. 13, pp. 48–54.Google Scholar
  76. 76.
    Bal’makov, M.D., Blinov, L.N., and Kul’mas, M.N., Basic Principles of Information Recording in Condensed Systems, inReshetka Tarasova i novye problemy stekloobraznogo sostoyaniya: Doklady nauchnogo seminara (Reports of Scientific Workshop: Tarasov’s Network and New Problems of the Vitreous State), Moscow: Ross. Khim. Tekhnol. Univ. im. D.I. Mendeleeva, 1999, pp. 6–8.Google Scholar
  77. 77.
    Kadomtsev, B.B., Classical and Quantum Irreversibility,Usp. Fiz, Nauk, 1995, vol. 165, no. 8, pp. 967–973.Google Scholar
  78. 78.
    Sudbery, A.,Quantum Mechanics and the Particles of Nature, Cambridge: Cambridge Univ. Press, 1986. Translated under the titleKvantovaya mekhanika ifizika elementarnykh chastits, Moscow: Mir, 1989.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • M. D. Bal’makov
    • 1
  1. 1.Faculty of ChemistrySt. Petersburg State University (Petrodvorets Branch)PetrodvoretsRussia

Personalised recommendations