Skip to main content
Log in

Myuller’s concept of the viscous flow: Prospects for its evolution

  • Proceedings of the International Conference “Glasses and Solid Electrolytes” On the Occasion of the 275th Anniversary of the St. Petersburg University and Centenary of Professor Rudolf Ludvigovich Myuller (St. Petersburg, Russia, May 17–19, 1999)
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The salient points of Myuller’s concept of viscous flow are set forth. The concept is analyzed in terms of the basic principles of quantum mechanics and statistical thermodynamics. Particular emphasis is placed on the activation entropy of the viscous flow S *η and the glass transition entropy ΔS g . It is demonstrated that, when the tunnel penetration gives way to over-the-barrier passage, the temperature dependences are not described by the Arrhenius equation. The information aspect of the discrete transformations of chemical bonds is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myuller, R.L., Chemical Features of Polymeric Glass-Forming Materials and the Nature of Glass Formation, inStekloobraznoe sostoyanie (The Vitreous State), Moscow: Akad. Nauk SSSR, 1960, pp. 61–71.

    Google Scholar 

  2. Myuller, R.L.,Elektroprovodnost’ stekloobraznykh veshchestv (Electric Conductivity of Vitreous Compounds), Leningrad: Leningr. Gos. Univ., 1968.

    Google Scholar 

  3. Myuller, R.L., The Solid State Chemistry and the Vitreous State, inKhimiya tverdogo tela (The Solid State Chemistry), Leningrad: Leningr. Gos. Univ., 1965, pp. 9–63.

    Google Scholar 

  4. Myuller, R.L., The Valence Theory of Viscosity and Flow Behavior in the Critical Temperature Range for High-Melting Glass-Forming Materials,Zh. Prikl. Khim. (Leningrad), 1955, vol. 28, no. 10, pp. 1077–1087.

    CAS  Google Scholar 

  5. Myuller, R.L., The Nature of Activation Energy and Experimental Data on the How Behavior of High-Melting Glass-Forming Materials,Zh. Prikl. Khim. (Leningrad), 1955, vol. 28, no. 4, pp. 363–371.

    CAS  Google Scholar 

  6. Myuller, R.L., On the Problem of Interrelation between the Electric Conductivity and the Viscosity of Glasses,Zh. Prikl, Khim. (Leningrad), 1959, vol. 1, no. 2, pp. 346–347.

    Google Scholar 

  7. Glasstone, S., Laidler, K.J., and Eyring, H.,The Theory of Rate Processes, New York: Princeton Univ., 1941. Translated under the titleTeoriya absolyutnykh skorostei reaktsii, Moscow: Inostrannaya Literatura, 1948.

    Google Scholar 

  8. Mazurin, O.V.,Steklovanie (Glass Transition), Leningrad: Nauka, 1986.

    Google Scholar 

  9. Bal’makov, M.D., Configurational Entropy of the Vitreous State,Fiz. Khim. Stekla, 1996, vol. 22, no. 4, pp. 485–501 [Glass Phys. Chem. (Engl. transi.), 1996, vol. 22, no. 4, pp. 344-355].

    Google Scholar 

  10. Bal’makov, M.D., Blinov, L.N., and Pocheptseva, N.S., Entropy of Glass Transition and Polymorphism,Tech. Fiz. Lett., 1998, vol. 24, no. 2, pp. 86–88.

    Article  Google Scholar 

  11. Bal’makov, M.D., Glass Transition and Some Problems of Nonequilibrium Thermodynamics,Fiz. Khim. Stekla, 1999, vol. 25, no. 3, pp. 309–326 [Glass Phys. Chem. (Engl. transi.), 1999, vol. 25, no. 3, pp. 233–245].

    Google Scholar 

  12. Nemilov, S.V., The Valence-Configurational Theory of Viscous Flow of Supercooled Glass-Forming Liquids and Its Experimental Validation,Fiz. Khim. Stekla, 1978, vol. 4, no. 2, pp. 129–148.

    CAS  Google Scholar 

  13. Bazarov, I.P.,Termodinamika (Thermodynamics), Moscow: Vysshaya Shkola, 1983.

    Google Scholar 

  14. Nemilov, S.V., Relation between Configurational Entropy and Activation Entropy for Viscous Flow of Supercooled Glass-Forming Liquids,Fiz. Khim. Stekla, 1976, vol. 2, no. 3, pp. 193–203.

    CAS  Google Scholar 

  15. Bibikov, Yu.N.,Obshchii kurs obyknovennykh differentsial’nykh uravnenii (A General Course of Ordinary Differential Equations), Leningrad: Leningr. Gos. Univ., 1981.

    Google Scholar 

  16. Nemilov, S.V.,Thermodynamic and Kinetic Aspects of the Vitreous State, Boca Raton: CRC, 1995.

    Google Scholar 

  17. Filipovich, V.N., The Vacancy-Diffusion Theory of the Viscosity of Glasses ant Its Application to Silica Glass,Fiz. Khim. Stekla, 1975, vol. 1, no. 3, pp. 256–264.

    CAS  Google Scholar 

  18. Pryanishnikov, V.P., Covalent Model of Silica and General Regularities of Glass Formation Process, inStekloobraznoe sostoyanie (The Vitreous State), Leningrad: Nauka, 1971, pp. 55–60.

    Google Scholar 

  19. Shultz, M.M., On the Chemical Structure of Glass-Forming Melts and Glasses, inStekloobraznoe sostoyanie (The Vitreous State), Leningrad: Nauka, 1983, pp. 10–18.

    Google Scholar 

  20. Kokorina, V.F., The Influence of Chemical Bond on the Glass Formation and Glass Properties, inStekloobraznoe sostoyanie (The Vitreous State), Leningrad: Nauka, 1971, pp. 87–92.

    Google Scholar 

  21. Borisova, Z.U.,Khal’kogenidnye poluprovodnikovye stekla (Chalcogenide Semiconductor Glasses), Leningrad: Leningr. Gos. Univ., 1983.

    Google Scholar 

  22. Shkol’nikov, E.V., On the Interrelation between Structural-Chemical Features and Kinetic Parameters of Crystallization, inStekloobraznoe sostoyanie (The Vitreous State), Leningrad: Nauka, 1983, pp. 131–135.

    Google Scholar 

  23. Baidakov, L.A., Glass-Forming Ability: A Quantitative Criterion with Allowance for the Nature of Chemical Bonding,Fiz. Khim. Stekla, 1994, vol. 20, no. 3, pp. 341–348 [Glass Phys. Chem. (Engl. transl.), 1994, vol. 20, no. 3, pp. 232–236].

    CAS  Google Scholar 

  24. Blinov, L.N., Magnetic Properties of Chalcogenide Glasses (A Review),Zh. Prikl. Khim. (S.-Peterburg), 1999, vol. 72, no. 7, pp. 1057–1064.

    CAS  Google Scholar 

  25. Pronkin, A.A., On the Problem of Transport Number for Sodium Ions in Aluminosilicate Glasses,Zh. Prikl. Khim. (Leningrad), 1964, vol. 37, no. 4, pp. 887–888.

    CAS  Google Scholar 

  26. Nikitin, E.E.,Teoriya elementarnykh atomno-moleku-lyarnykh protsessov v gazakh (The Theory of Elementary Atomic-Molecular Processes in Gases), Moscow: Khimiya, 1970.

    Google Scholar 

  27. Klinger, M.I., Anomalous Dynamic (Low-Temperature) and Electronic Properties of Glasses,Fiz. Khim. Stekla, 1989, vol. 15, no. 3, pp. 377–396.

    CAS  Google Scholar 

  28. Malinovsky, V.K., Novikov, V.N., and Sokolov, A.P., Low-Frequency Raman Scattering in Vitreous Materials,Fiz. Khim. Stekla, 1989, vol. 15, no. 3, pp. 331–365.

    Google Scholar 

  29. Malinovsky, V.K., Novikov, V.N., and Sokolov, A.P., Features of Dynamics and Spatial Correlations in the Genesis of the Vitreous State,Fiz. Khim. Stekla, 1996, vol. 22, no. 3, pp. 204–221 [Glass Phys. Chem. (Engl. transl.), 1996, vol. 22, no. 3, pp. 152–164].

    Google Scholar 

  30. Born, M. and Oppenheimer, J.R., Zur Quantentheorie der Molekeln,Ann. Phys. (Leipzig), 1927, vol. 84, no. 20, pp. 457–483.

    Article  CAS  Google Scholar 

  31. Bal’makov, M.D., Statistical Properties of Many-Minimum Potential Model, Vestn. Leningr. Univ., 1985, no. 18, pp. 105-107.

  32. Bal’makov, M.D., Evolution of R.L. Myuller’s Concept of the Glass-Forming Ability of Melts,Fiz. Khim. Stekla, 1992, vol. 18, no. 3, pp. 1–22 [Sov. J. Glass Phys. Chem. (Engl. transl.), 1992, vol. 18, no. 3, pp. 193–202].

    CAS  Google Scholar 

  33. Bal’makov, M.D.,Stekloobraznoe sostoyanie veshchestva (The Vitreous State of the Matter), St. Petersburg: St. Petersburg Gos. Univ., 1996.

    Google Scholar 

  34. Sanditov, D.S. and Bartenev, G.M.,Fizicheskie svoistva neuporyadochennykh Struktur (Physical Properties of Disordered Structures), Novosibirsk: Nauka, 1982.

    Google Scholar 

  35. Anderson, P.W., Halperin, B.I., and Varma, CM., Anomalous Low-Temperature Thermal Properties of Glasses and Spin-Glasses,Philos. Mag., 1972, vol. 25, no. 1, pp. 1–9.

    Article  CAS  Google Scholar 

  36. Bal’makov, M.D., The Concept of Small Structural Transformations, in“Novye idei v fizike stekla.” Vsesoyuznyi nauchnyi seminar, posvyashchennyi pamyati prof essora V. V. Tarasova (All-Union Scientific Workshop Dedicated to the Memory of Prof. V.V. Tarasov “New Ideas in the Glass Physics”), Moscow: VNIIESM, 1987, vol. 1, pp. 67–74.

    Google Scholar 

  37. Kolmogorov, A.N. and Fomin, S.V.,Elementy teorii funktsii i funktsional’nogo analiza (Elements of Function Theory and Functional Analysis), Moscow: Nauka, 1981.

    Google Scholar 

  38. Grey, H.,Electrons and Chemical Bonding, New York: Benjamin, 1965. Translated under the titleElektrony i khimicheskaya svyaz’, Moscow: Mir, 1967.

    Google Scholar 

  39. Bal’makov, M.D., On the Entropy Change in Nonequilibrium State,Vestn. St. Petersburg Gos. Univ., Ser. 4: Fiz, Khim., 1999, issue 2 (no. 11), pp. 52-62.

  40. Bal’makov, M.D., Information Capacity of Condensed Systems,Usp. Fiz. Nauk, 1999, vol. 169, no. 11, pp. 1273–1280 [Phys. Usp. (Engl. transl.), 1999, vol. 42, no. 11, pp. 1167–1173].

    Google Scholar 

  41. Bal’makov, M.D., Blinov, L.N., and Kul’mas, M.N., Microscopic Approach to Information Recording in Condensed Systems,Nauchno-Tekh. Vedomosti St. Petersburg Gos. Univ., 1999, no. 2 (16), pp. 36-39.

  42. Kadomtsev, B.B.,Dinamika i informatsiya (Dynamics and Information), Moscow: Uspekhi Fizicheskikh Nauk, 1999.

    Google Scholar 

  43. Kadomtsev, B.B. and Kadomtsev, M.B., Wave Function Collapses,Usp. Fiz. Nauk, 1996, vol. 166, no. 6, pp. 651–659.

    CAS  Google Scholar 

  44. Aleskovskii, V.B.,Khimiya nadmolekulyarnykh soedinenii (Chemistry of Supramolecular Compounds), St. Petersburg: St. Petersburg Gos. Univ., 1996.

    Google Scholar 

  45. Bal’makov, M.D., Production of Information in Microscopic Processes,Vestn. St. Petersburg Gos. Univ., Ser. 4: Fiz., Khim., 1998, issue 2 (no. 11), pp. 137-139.

  46. Bal’makov, M.D., Information Aspects of Chemical Copying,Vestn. St. Petersburg Gos. Univ., Ser. 4: Fit, Khim., 1999, issue 1 (no. 4), pp. 43-52.

  47. Kul’mas, M.N., Bal’makov, M.D., and Blinov, L.N., On Certain Aspects of Information Recording in Condensed Systems, inTrudy VI Mezhdunarodnoi nauchno-metodicheskoi konferentsii “Vysokie intellektual’nye tekhnologii obrazovaniya i nauki-” (Proc. VI Int. Sci. Methodical Conf. “High Intellectual Technologies of Education and Science“), St. Petersburg: St. Petersburg Gos. Univ., 1999, p. 194.

    Google Scholar 

  48. Bal’makov, M.D., Production of Information in Chemical Processes,Tezisy dokladov II Mezhdunarodnoi konferentsii “Khimiya vysokoorganizovannykh veshchestv i nauchnye osnovy nanotekhnologii” (Abstracts of Papers, II Int. Conf. “Chemistry of Highly Organized Substances and Scientific Principles of Nanotechnology”), St. Petersburg, 1998, pp. 7–8.

  49. Shklovskii, B.I. and Efros, A.L.,Elektronnye svoistva legirovannykh poluprovodnikov (Electronic Properties of Doped Semiconductors), Moscow: Nauka, 1979.

    Google Scholar 

  50. Blokhintsev, D.I.,Osnovy kvantovoi mekhaniki (The Principles of Quantum Mechanics), Moscow: Vysshaya Shkola, 1961.

    Google Scholar 

  51. Landau, L.D. and Lifshitz, E.M.,Kvantovaya mekhanika. Nerelyativistskaya teoriya (Quantum Mechanics: Nonrelativistic Theory), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  52. Murin, I.V., Glumov, O.V., Gunsser, W, and Karus, M., Transport Processes in Fluoride Crystals under High Pressure,Radiat. Eff. Defects Solids, 1995, vol. 137, pp. 251–254.

    Article  CAS  Google Scholar 

  53. Privalov, A.F., Murin, I.V., and Vieth, H.-M., Disorder of Ionic Mobility in Crystalline Superionic Conductors Characterized by 19 F-NMR,Solid State Ionics, 1997, vols. 101–103, pp. 393–396.

    Google Scholar 

  54. Tverjanovich, A.S., Balmakov, M.D., and Tveryanovich, Yu.S., Activation Energy of Relaxation Time and Viscosity of Chalcogenide Glasses,Extended Abstracts, XI Int. Symposium on Non-Oxide and New Optical Glasses, Sheffield (UK), 1998, pp. 334-339.

  55. Nemilov, S.V. and Petrovskii, G.T., A Study of Viscosity of Glasses in Selenium-Arsenic System,Zh. Prikl. Khim. (Leningrad), 1963, vol. 36, no. 5, pp. 977–981.

    CAS  Google Scholar 

  56. Chernov, A.P., Dembovsky, S.A., and Makhova, V.I., Viscosity and Structure of Glasses in the As2X3-AsI3 Systems,Izv. Akad. Nauk SSSR, Neorg. Mater., 1970, vol. 6, no. 4, pp. 823–825.

    CAS  Google Scholar 

  57. Orlova, G.M., Udalov, S.S., and Manakhova, E.N., Elastic and Thermal Properties of Glasses in the AsSe-TlSe and As2Se3-Tl2Se Systems,Fiz. Khim. Stekla, 1985, vol. 11, no. 2, pp. 215–218.

    CAS  Google Scholar 

  58. Kadoun, A., Chaussemy, G., Fornazero, J., and Mackowski, J.M., Kinematic Viscosity of AsxSe1-x Glass Forming Liquids,J. Non-Cryst. Solids, 1983, vol. 57, no. 1, pp. 101–108.

    Article  CAS  Google Scholar 

  59. Ananichev, V.A., Demidov, A.I., and Kudryavtsev, A.N., Thermal Expansion Coefficient and Density of lass-Forming Melts in the As2S3-TlAsS2 and As2Se3- TlAsSe2 Systems,Fiz. Khim. Stekla, 1985, vol. 11, no. 2, pp. 224–227.

    CAS  Google Scholar 

  60. Nemilov, S.V., Genetically Predetermined Self-Organization of Low-Energy Excitations in Glasses and the Prospects of Neural-Network Modeling,Fiz. Khim. Stekla, 1998, vol. 24, no. 3, pp. 390–404 [Glass Phys. Chem. (Engl. transl.), 1998, vol. 24, no. 3, pp. 268–279].

    Google Scholar 

  61. Shannon, C.,Raboty po teorii informatsii i kibernetiki (Papers on the Information and Cybernetics Theory), Moscow: Inostrannaya Literatura, 1963.

    Google Scholar 

  62. Poplavskii, R.P.,Termodinamika informatsionnykh protsessov (Thermodynamics of Information Processes), Moscow: Nauka, 1981.

    Google Scholar 

  63. Blyumenfel’d, L.A., Information, Thermodynamics, and Construction of Biological Systems,Soros Obraz. Zh., 1996, no. 7, pp. 88–92.

  64. Yoffe, A.D., Low-Dimensional Systems: Quantum Size Effects and Electronic Properties of Semiconductor Microcrystallites (Zero-Dimensional Systems) and Some Quasi-Two-Dimensional Systems,Adv. Phys., 1993, vol. 42, no. 2, pp. 173–266.

    Article  CAS  Google Scholar 

  65. Bal’makov, M.D., Blinov, L.N., and Kul’mas, M.N., On the Formation of Nanostructures in Condensed Systems, inFundamental’nye issledovaniya vtekhnicheskikh universitetakh. Materialy III Vserossiskoi nauchno-tekhnicheskoi konferentsii (Basic Research in Technical Universities, Proc. III All-Russia Scientific and Engineering Conf.), St. Petersburg: St. Petersburg Gos. Univ., 1999, p. 137.

    Google Scholar 

  66. Careri, G.,Ordine e disordine nella materia, Rome: Laterza & Figli Spa, 1982. Translated under the titlePoryadok i besporyadok vstrukture materii, Moscow: Mir, 1985.

    Google Scholar 

  67. Blinov, L.N., Bal’makov, M.D., and Pocheptsova, N.S., On the Superconductivity of Disordered Systems with Reduced Configurational Entropy,Pis’ma Zh. Tekh. Fiz., 1996, vol. 22, no. 22, pp. 69–73.

    CAS  Google Scholar 

  68. Klyshko, D.N., Basic Concepts of Quantum Physics from Operational Viewpoint,Usp. Fiz. Nauk, 1998, vol. 168, no. 9, pp. 975–1015.

    Google Scholar 

  69. Menskii, M.B., Decoherence Phenomenon and the Theory of Continuous Quantum Measurements,Usp. Fiz. Nauk, 1998, vol. 168, no. 9, pp. 1017–1035.

    Google Scholar 

  70. Kilin, S.Ya., Quantum Information,Usp. Fiz. Nauk, 1999, vol. 169, no. 5, pp. 507–527.

    Article  Google Scholar 

  71. Von Oppen, G., Objects and Environment,Usp. Fiz. Nauk, 1996, vol. 166, no. 6, pp. 661–667.

    Google Scholar 

  72. Ivanitskii, G.R., Medvinskii, A.B., Deev, A.A., and Tsyganov, M.A., From “Maxwell Demon” to Self-Organization of Processes in Living Systems,Usp. Fiz. Nauk, 1998, vol. 168, no. 11, pp. 1221–1233.

    Google Scholar 

  73. Klimontovich, Yu.L., Entropy and Information of Open Systems,Usp. Fiz. Nauk, 1999, vol. 169, no. 4, pp. 443–452.

    Google Scholar 

  74. Nemilov, S.V., The Possibilities of Modeling Neural Networks in the Framework of Thermodynamics of Genetically Disordered Systems (Glasses),J. Biol. Phys., 1998, vol. 24, no. 1, pp. 41–58.

    Article  CAS  Google Scholar 

  75. Bal’makov, M.D., Blinov, L.N., Murin, I.V., and Pocheptsova, N.S., Microscopic Principles of Information Recording in Condensed Media,Pis’ma Zh. Tekh. Fiz., 1999, vol. 25, no. 13, pp. 48–54.

    Google Scholar 

  76. Bal’makov, M.D., Blinov, L.N., and Kul’mas, M.N., Basic Principles of Information Recording in Condensed Systems, inReshetka Tarasova i novye problemy stekloobraznogo sostoyaniya: Doklady nauchnogo seminara (Reports of Scientific Workshop: Tarasov’s Network and New Problems of the Vitreous State), Moscow: Ross. Khim. Tekhnol. Univ. im. D.I. Mendeleeva, 1999, pp. 6–8.

    Google Scholar 

  77. Kadomtsev, B.B., Classical and Quantum Irreversibility,Usp. Fiz, Nauk, 1995, vol. 165, no. 8, pp. 967–973.

    CAS  Google Scholar 

  78. Sudbery, A.,Quantum Mechanics and the Particles of Nature, Cambridge: Cambridge Univ. Press, 1986. Translated under the titleKvantovaya mekhanika ifizika elementarnykh chastits, Moscow: Mir, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The publication of the Proceedings will be continued in the next issue of the journal. The paper “Rudolf Ludvigovich Myuller—A Man, Scientist, and Organizer” by S. V. Nemilov was published in the journalFiz. Khim. Stekla, 1999, vol. 25, no. 2, pp. 121–129 [Glass Phys. Chem. (Engl. transl.), 1999, vol. 25, no. 2, pp. 93–99].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bal’makov, M.D. Myuller’s concept of the viscous flow: Prospects for its evolution. Glass Phys Chem 26, 205–216 (2000). https://doi.org/10.1007/BF02738285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738285

Keywords

Navigation