Cell Biochemistry and Biophysics

, Volume 29, Issue 3, pp 281–306 | Cite as

Purinergic receptor-induced changes in paracellular resistance across cultures of human cervical cells are mediated by two distinct cytosolic calcium-related mechanisms



In human cervical (CaSki) cells, extracellular adenosine triphosphate (ATP) induces an acute decrease in the resistance of the lateral intercellular space (R LIS), phase I response, followed by an increase in tight junctional resistance (R TJ), phase II response. ATP also stimulates release of calcium from intracellular stores, followed by augmented calcium influx, and both effects have similar sensitivities to ATP (EC50 of 6 μM). The objective of the study was to determine the degree to which the changes in [Ca2+]i mediate the responses to ATP. 1,2-bis (2-aminophenoxy) ethane-N,N,N1,N1-tetraacetic acid (BAPTA) abrogated calcium mobilization and phase I response; in contrast, nifedipine and verapamil inhibited calcium influx and attenuated phase II response. Barium, La3+, and Mn2+ attenuated phase I response and attenuated and shortened the ionomycin-induced phase I-like decrease inR LIS, suggesting that store depletion-activated calcium entry was inhibited. Barium and La3+ also inhibited the ATP-induced phase II response, but Mn2+ had no effect on phase II response, and in the presence of low extracellular calcium it partly restored the increase inR TJ. KCl-induced membrane depolarization stimulated an acute decrease inR LIS and a late increase inR TJ similar to ATP, but only the latter was inhibited by nifedipine. KCl also induced a nifedipine-sensitive calcium influx, suggesting that acute increases in [Ca2+]i, regardless of mobilization or influx, mediate phase I response. Phase II-like increases inR TJ could be induced by treatment with diC8, and were not affected by nifedipine. Biphasic ATP-like changes inR TE could be induced by treating the cells with ionomycin plus diC8. We conclude that calcium mobilization mediates the early decrease inR LIS, and calcium influx via calcium channels activates protein kinase C and mediates the late increase inR TJ.

Index Entries

Extracellular ATP permeability tight junctions intercellular lateral space transepithelial transport cervical mucus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gorodeski, G.I., Merlin, D., De Santis, B. J., Frieden, K. A., Hopfer, U., Eckert, R. L., and Romero, M. F. (1994) Characterization of paracellular permeability in cultured human cervical epithelium: regulation by extracellular ATP.J. Soc. Gynecol. Invest. 1, 225–233.Google Scholar
  2. 2.
    Gorodeski, G. I., Peterson, D., De Santis, B. J. and Hopfer, U. (1996) Nucleotide-receptor mediated decrease of tight-junctional permeability in cultured human cervical epithelium.Am. J. Physiol. 270, C1715-C1725.PubMedGoogle Scholar
  3. 3.
    Gorodeski, G. I., Hopfer, U., De Santis, B. J., Eckert, R. L., Rorke, E. R., and Utian, W. H. (1995) Biphasic regulation of paracellular permeability in human cervical cells by two distinct nucleotide receptors.Am. J. Physiol. 268, C1215-C1226.PubMedGoogle Scholar
  4. 4.
    Contreras, R. G., Miller, J. H., Zamora, M., Gonzalez-Mariscal, L., and Cereijido, M. (1992) Interaction of calcium with the plasma membrane of epithelial (MDCK) cells during junction formation.Am. J. Physiol.,263, C313-C318.PubMedGoogle Scholar
  5. 5.
    Gonzalez-Mariscal, L., Contreras, R. G., Bolivar, J. J., Ponce, A., Chavez de Ramirez, B., and Cereijido, M. (1990) Role of calcium in tight junction formation between epithelial cells.Am. J. Physiol. 259, C978-C986.PubMedGoogle Scholar
  6. 6.
    Gorodeski, G. I., Wenwu, J., and Hopfer, U. (1997) Extracellular Ca2+ directly regulates tight junctional permeability in the human cervical cell line CaSki.Am. J. Physiol. 272, C511-C524.PubMedGoogle Scholar
  7. 7.
    Meldolesi, J., Castiglioni, G., Parma, R., Nassivera, N., and De-Çamilli, P. (1978) Ca2+-dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells.J. Cell Biol. 79, 156–172.PubMedCrossRefGoogle Scholar
  8. 8.
    Volberg, T., Geiger, B., Kartenbeck, J., and Franke, W. W. (1986) Changes in membrane-microfilament interaction in intercellular adherens junctions upon removal of extracellular Ca2+ ions.J. Cell Biol. 102, 1832–1842.PubMedCrossRefGoogle Scholar
  9. 9.
    Gorodeski, G. I., Romero, M. F., Hopfer, U., Rorke, E., Utian, W. H., and Eckert, R. L. (1994) Human uterine cervical epithelial cells grown on permeable support—a new model for the study of differentiation and transepithelial transport.Differentiation 56, 107–118.PubMedGoogle Scholar
  10. 10.
    Gorodeski, G. I. and Goldfarb, J. (1997) Extracellular ATP regulates transcervical permeability by modulating two distinct paracellular pathways.Am. J. Physiol. 272, C1602-C1610.PubMedGoogle Scholar
  11. 11.
    Dubyak, G. R. and De Young, M. B. (1985) Intracellular Ca2+ mobilization activated by extracellular ATP in Ehrlich ascites tumor cells.J. Biol. Chem. 260, 10,653–10,661.Google Scholar
  12. 12.
    Okamoto, Y., Furuno, T., Hamano, T., and Nakanishi, M. (1995) Confocal fluorescence microscopy for studying thapsigargin-induced bivalent-cation entry into B cells.Biochem. J. 305, 1011–1015.PubMedGoogle Scholar
  13. 13.
    Gorodeski, G. I., De Santis, B. J., Goldfarb, J., Utian, W. H., and Hopfer, U. (1995) Osmolar changes regulate the paracellular permeability of cultured human cervical epithelium.Am. J. Physiol. 269, C870-C877.PubMedGoogle Scholar
  14. 14.
    Sela, D., Ram, E., and Atlas, D. (1991) ATP receptor.J. Biol. Chem. 266, 17,990–17,994.Google Scholar
  15. 15.
    Foskett, J. K. (1994). The role of calcium in the control of volume regulatory transport pathways, inCellular and Molecular Physiology of Cell Volume Regulation (Strange, K., ed.), CRC, Boca Raton, FL, pp. 259–278.Google Scholar
  16. 16.
    Blatter, L. A. (1995) Depletion and filling of intracellular calcium stores in vascular smooth muscle.Am. J. Physiol. 268, C503-C512.PubMedGoogle Scholar
  17. 17.
    Jenner, S., Farndale, R. W., and Sage, S. O. (1994) The effect of calcium-store depletion and refilling with various bivalent cations on tyrosine phosphorylation and Mn2+ entry in fura-2-loaded human platelets.Biochem. J. 303, 337–339.PubMedGoogle Scholar
  18. 18.
    Morgan, A. J. and Jacob, R. (1994) Ionomycin enhances Ca2+ influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane.Biochem. J. 300, 665–672.PubMedGoogle Scholar
  19. 19.
    Hanck, D. A. and Sheets, M. F. (1992) Extracellular divalent and trivalent cation effects on sodium current kinetics in single canine cardiac Purkinje cells.J. Physiol. 454, 267–298.PubMedGoogle Scholar
  20. 20.
    Hughes, A. D. and Schacheter, M. (1994) Multiple pathways for entry of calcium and other divalent cations in a vascular smooth muscle cell line (A7r5).Cell Calcium 15, 317–330.PubMedCrossRefGoogle Scholar
  21. 21.
    Castro, E., Mateo, J., Tome, A. R., Barbosa, R. M., Miras-Portugal, M. T., and Rosario, L. M. (1995) Cell-specific purinergic receptors coupled to Ca2+ entry and Ca2+ release from internal stores in adrenal chromaffin cells. Differential sensitivity to UTP and suramin.J. Biol. Chem. 270, 5098–5106.PubMedCrossRefGoogle Scholar
  22. 22.
    Striggow, F. and Bohnensack, R. (1994) Inositol 1,4,5-trisphosphate activates receptor-mediated calcium entry by two different pathways in hepatocytes.Eur. J. Biochem. 222, 229–234.PubMedCrossRefGoogle Scholar
  23. 23.
    Barry, V. A. and Cheek, T. R. (1994) Extracellular ATP triggers two functionally distinct calcium signalling pathways in PC12 cells.J. Cell Sci. 107, 451–462.PubMedGoogle Scholar
  24. 24.
    Reimer W. J. and Dixon, S. J. (1992) Extracellular nucleotides elevate [Ca2+]i in rat osteoblastic cells by interaction with two receptor subtypes.Am. J. Physiol. 263, C1040-C1048.PubMedGoogle Scholar
  25. 25.
    Boarder, M. R., Weisman, G. A., Turner, J. T., and Wilkinson, G. R. (1995) G protein-coupled P2 purinoceptors: from molecular biology to functional responses.TiPS 16, 133–139.PubMedGoogle Scholar
  26. 26.
    Brake, A. J., Wagenback, M. J., and Julius, D. (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor.Nature 371, 519–523.PubMedCrossRefGoogle Scholar
  27. 27.
    Exton, J. H. (1990) Signaling through phosphatidylcholine breakdown.J. Biol. Chem. 265, 1–4.PubMedGoogle Scholar
  28. 28.
    Balda, M. S., Gonzalez-Mariscal, L., Matter, K., Creijido, M., and Anderson, J. M. (1993) Assembly of the tight junction: the role of diacylglycerol.J. Cell Biol. 123, 293–302.PubMedCrossRefGoogle Scholar
  29. 29.
    Born, G. V. R. and Kratzer, M. A. A. (1992) Source and concentration of extracellular adenosine triphosphate during hemostasis in rats, rabbits and man.J. Physiol. 354, 419–429.Google Scholar
  30. 30.
    Silensky, E. M. (1975) On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals.J. Physiol. 247, 145–162.Google Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • George I. Gorodeski
    • 1
    • 2
    • 2
  • Ulrich Hopfer
    • 2
  • Wenwu Jin
    • 2
  1. 1.Departments of Reproductive BiologyCase Western Reserve University School of MedicineCleveland
  2. 2.Department of Physiology and BiophysicsCase Western Reserve University School of MedicineCleveland

Personalised recommendations