Cell Biochemistry and Biophysics

, Volume 29, Issue 1–2, pp 19–34 | Cite as

Signaling role of PDE isozymes in pathobiology of glomerular mesangial cells

Studies in vitro and in vivo
  • Thomas P. Dousa
Feature Head


Mesangial cells (MC) of renal glomeruli respond to immune-inflammatory injury by accelerated proliferation and generation of reactive oxygen metabolites (ROM). We studied in vivo and in vitro roles of cAMP-protein kinase A (PKA) signaling in modulation of these pathobiologic processes with focus on PDE isozymes. Mitogenic synthesis of DNA in mesangial cells grown in primary culture was blocked by forskolin and dibutyryl cyAMP. Incubation of MC with PDE-3 inhibitors, cilostamide and lixazione, inhibited (>50%) mitogenesis, whereas inhibitors of PDE-4, rolipram and denbufylline, caused little or no inhibition. Conversely, inhibitors of PDE-4 suppressed generation of ROM in MC, whereas inhibitors of PDE-3 had no effect. Incubation of mesangial cells with cilostamide or with rolipram increasedin situ activity of PKA, and effects of the two inhibitors were additive. PDE inhibitors also decreased activity of mitogen-activated protein kinase. The efficacy of PDE isozyme inhibitors (IC50) to suppress mitogenesis or ROM generation paralleled IC50 for inhibition of cAMP hydrolysis by extracts from mesangial cells. Administration of lixazinone or lixazione in combination with rolipram to rats with mesangial proliferative glomerulonephritis induced by antithymic serum suppressed proliferation of mesangial cells and also reduced other histopathologic manifestations of the disease. Based on these observations, we propose that in MC, a cAMP pool that is hydrolyzed by PDE-3 inhibits by negative crosstalk via activation of PKA, mitogen-activated protein kinase (MAPK) pathway, and mitogenesis; whereas cAMP pool linked to PDE-4 inhibits, also via activation of PKA, ROM generation in mesangial cells. Results also suggest that PDE isozyme inhibitors, in particular inhibitors of PDE-3, should be investigated for potential use for “signal transduction pharmacotherapy” of glomerulonephritis.

Index Entries

Mesangial cells renal cyclic-3′,5′-nucleotide phosphodiesterase mitogenesis superoxidation experimental glomerulonephritis PDE isozyme inhibitors PDE-3, PDE-4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnson, R. J. (1994) The glomerular response to injury: Progression or resolution?Kidney Int. 45, 1769–1782.PubMedCrossRefGoogle Scholar
  2. 2.
    Sedor, J. R., Konieczkowski, M., Huang, S., Gronich, J. H., Nakazato, Y., Gordon, G., and King, C. H. (1993) Cytokines, mesangial cell activation and glomerular injury.Kidney Int. 43, S65-S70.Google Scholar
  3. 3.
    Dousa, T. P. (1985) Glomerular metabolism, inThe Kidney: Physiology and Pathophysiology (Seldin, D. W., and Giebisch, G., eds.), Raven, New York, pp. 645–667.Google Scholar
  4. 4.
    Mené, P., Simonson, M. S., and Dunn, M. J. (1989) Physiology of the mesangial cell.Physiol. Rev. 69, 1347–1424.PubMedGoogle Scholar
  5. 5.
    Radeke, H. H., Meier, B., Topley, N., Floge, J., Habermehl, G. G., and Resch, K. (1990) Interleukin 1-α and tumor necrosis factor-α induce oxygen radical production in mesangial cells.Kidney Int. 37, 767–775.PubMedCrossRefGoogle Scholar
  6. 6.
    Ryan, W. L. and Heidrick, M. L. (1974) Role of cyclic nucleotides in cancer, inAdvances in Cyclic Nucleotide Research, vol. 4 (Greengard, P. and Robison, G. A., eds.), Raven, New York, pp. 81–116.Google Scholar
  7. 7.
    Chlapowski, F. J., Kelly, L. A., and Butcher, R. W. (1975)Advances in Cyclic Nucleotide Research, vol. 6 (Greengard, P. and Robison, G. A., eds.), Raven, New York, pp. 245–338.Google Scholar
  8. 8.
    Cano, E. and Mahadevan, L. C. (1995) Parallel signal processing among mammalian MAPKs.TIBS 20, 117–122.PubMedGoogle Scholar
  9. 9.
    Frodin, M., Peraldi, P., and Obberghen, E. V. (1994) Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells.J. Biol. Chem. 269, 6207–6214.PubMedGoogle Scholar
  10. 10.
    Graves, L. M., Bornfeldt, K. E., Raines, E. W., Potts, B. C., MacDonald, S. G., Ross, R., and Krebs, E. G. (1993) Protein kinase A antagonizes platelet-derived growth factor-induced signalling by mitogen-activated protein kinase in human arterial smooth muscle cells.Proc. Natl. Acad. Sci. USA 90, 10,300–10,304.Google Scholar
  11. 11.
    Marx, J. (1993) Two major signal pathways linked.Science 262, 988,989.PubMedCrossRefGoogle Scholar
  12. 12.
    Daum, G., Eisenmann-Tappe, I., Fries, H.-W., Troppmair, J., and Rapp, U. R. (1994) The ins and outs ofRaf-1 kinases.TIBS 19, 474–479.PubMedGoogle Scholar
  13. 13.
    Häfner, S., Adler, H. S., Mischak, H. Janosch, P. A., Heidecker, G., Wolfman, A., Pippig, S. Lohse, M., Uefing, M., and Kolch, W. (1994) Mechanism of inhibition ofRaf-1 by protein kinase A.Mol. Cell Biol. 14, 6696–6703.PubMedGoogle Scholar
  14. 14.
    Mischak, H., Seitz, T., Janosch, P., Eulitz, M., Steen, H., Schellerer, M., Philipp, A., and Kolch, W. (1996) Negative regulation ofRaf-1 by phosphorylation of serine 621.Mol. Cell Biol. 16, 5409–5418.PubMedGoogle Scholar
  15. 15.
    Huang, C.-Y.F. and Ferrell, J. E., Jr. (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade.Proc. Natl. Acad. Sci. USA 93, 10,078–10,083.Google Scholar
  16. 16.
    Ferrell, J. E., Jr. (1996) Tripping the switch fantastic: How a protein kinase cascade can convert graded inputs into switch-like outputs.TIBS 21, 460–466.PubMedGoogle Scholar
  17. 17.
    Matousovic, K., Grande, J. P., Chini, C. S., Chini, E. N., and Dousa, T. P. (1995) Inhibitors of cyclic nucleotide phosphodiesterase isozymes type-III and type-IV suppress proliferation of rat mesangial cells.J. Clin. Invest. 96, 401–410.PubMedGoogle Scholar
  18. 18.
    Chini, E. N., Choi, E., Grande, J. P., Burnett, J. C., and Dousa, T. P. (1995) Adrenomedullin suppresses mitogenesis in rat mesangial cells via cAMP pathway.Biochem. Biophys. Res. Commun. 215, 868–873.PubMedCrossRefGoogle Scholar
  19. 19.
    Chini, C. C. S., Grande, J. P., Chini, E. N., and Dousa, T. P. (1997) Compartmentalization of cAMP signaling in mesangial cells by phosphodiesterase isozymes PDE-3 and PDE-4. Regulation of superoxidation and mitogenesis.J. Biol. Chem. 272, 9854–9859.PubMedCrossRefGoogle Scholar
  20. 20.
    Yamamoto, T. and Wilson, C. B. (1987) Quantitative and qualitative studies of antibody-induced mesangial cell damage in the rat.Kidney Int. 32, 514–525.PubMedCrossRefGoogle Scholar
  21. 21.
    Bagchus, W. M., Hoedemaeker, P. J., Rozing, J., and Bakker, W. W. (1986) Glomerulonephritis induced by monoclonal anti-Thy-1.1 antibodies. A sequential histological and ultrastructural study in the rat.Lab. Invest. 55, 680–687.PubMedGoogle Scholar
  22. 22.
    Gapstur, S. M., Homma, S., and Dousa, T. P. (1988) cAMP-binding proteins in medullary tubules from rat kidney: Effect of ADH.Am. J. Physiol. 255, F292-F300.PubMedGoogle Scholar
  23. 23.
    Tsuboi, Y., Shankland, S. J., Grande, J. P., Walker, H. J., Johnson, R. J., and Dousa, T. P. (1996) Suppression of mesangial proliferation glomerulonephritis development in rats by inhibitors of cAMP phosphodiesterase isozymes types III and IV.J. Clin. Invest. 98, 262–270.PubMedCrossRefGoogle Scholar
  24. 24.
    Tsuboi, Y., Shankland, S. J., Grande, J. P., Walker, H. J., Johnson, R. J., and Dousa, T. P. (1996) Antagonist o cAMP phosphodiesterase isozyme PDE-III blocks development of proteinuria, mesangial cells (MC) proliferation and phenotypic transformation in mesangioproliferative glomerulonephritis (MSGN) elicited by antithymic serum (ATS) in rats.J. Am. Soc. Nephrol. 7, 1724.Google Scholar
  25. 25.
    Manganiello, V. C. and Elks, M. L. (1986) Regulation of particulate cAMP phosphodiesterase activity in 3T3-L1 adipocytes: the role of particulate phosphodiesterase in the antilipolytic action of insulin, inMechanisms of Insulin Action (Belfrage, P., Donnér, J., and Strålfors, P., eds.), Elsevier, pp. 147–166.Google Scholar
  26. 26.
    Elks, M. L. and Manganiello, V. C. (1984) Selective effects of phosphodiesterase inhibitors on different phosphodiesterases, adenosine 3′, 5′-monophosphate metabolism, and lipolysis in 3T3-L1 adipocytes.Endocrinology 115, 1262–1268.PubMedCrossRefGoogle Scholar
  27. 27.
    Conti, M., Nemoz, G., Sette, C., and Vincini, E. (1995) Recent progress in understanding the hormonal regulation of phosphodiesterases.Endocr. Rev. 16, 370–389.PubMedCrossRefGoogle Scholar
  28. 28.
    Beavo, J. A. (1995) Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms.Physiol. Rev. 75, 725–748.PubMedGoogle Scholar
  29. 29.
    Manganiello, V. C., Murata, T., Taira, M., Belfrage, P., and Degerman, E. (1995) Perspectives in biochemistry and biophysics. Diversity in cyclic nucleotide phosphodiesterase isozyme families.Arch Biochem. Biophys. 322, 1–13.PubMedCrossRefGoogle Scholar
  30. 30.
    Müller, T., Engels, P., and Fozard, J. R. (1996) Subtypes of the type 4 cAMP phosphodiesterases: Structure, regulation and selective inhibition.TIPS 17, 294–298.PubMedGoogle Scholar
  31. 31.
    Smith, K. J., Scotland, G., Beattie, J., Trayer, I. P., and Houslay, M. D. (1996) Determination of the structure of the N-terminal splice region of the cyclic AMP-specific phosphodiesterase RD1 (RNPDE-4A1) BY 1H NMR and identification of the membrane association domain using chimeric constructs.J. Biol. Chem. 271, 16,703–16,711.Google Scholar
  32. 32.
    O'Connell, J. C., McCllum, J. F., McPhee, I., Wakefield, J., Houslay, E. S., Wishart, W., Bolger, G., Frame, M., and Houslay, M. D. (1996) The SH3 domain of Src tyrosyl protein kinase interacts with the N-terminal splice region of the PDE-4A cAMP-specific phosphodiesterase RPDE-6 (RNPDE-4A5).Biochem. J. 318, 255–262.PubMedGoogle Scholar
  33. 33.
    Sumimoto, H., Kage, Y., Nunoi, H., Sasaki, H., Nose, T., Fukumaki, Y., Ohno, M., Minakami, S., and Takeshige, K. (1994) Role Src homology 3 domains in assembly and activation of the phagocyte NADPH Oxidase.Proc. Natl. Acad. Sci. USA 91, 5345–5349.PubMedCrossRefGoogle Scholar
  34. 34.
    Leto, T. L., Adams, A. G., and de Mendez, I. (1994) Assembly of the phagocyte NADPH oxidase: Binding of Src homology 3 domains to proline-rich targets.Proc. Natl. Acad. Sci. USA 91, 10,650–10,654.CrossRefGoogle Scholar
  35. 35.
    Spaulding, S. W. (1993) The ways in which hormones change cyclic adenosine 3′, 5′ monophosphate-dependent protein kinase subunits, and how such changes affect cell behavior.Endocr. Rev.,14, 632–650.PubMedCrossRefGoogle Scholar
  36. 36.
    Scott, J. D. and McCartney, S. (1994) Localization of A-kinase through anchoring proteins.Mol. Endocrinol. 8, 5–11, 1994.PubMedCrossRefGoogle Scholar
  37. 37.
    Dufau, M. L., Tsuruhara, T., Horner, K. A., Podesta, E., and Catt, K. J. (1977) Intermediate role of adenosine 3′, 5′-cyclic monophosphate and protein kinase during gonadotropin-induced steroidogenesis in testicular interstitial cells.Proc. Natl. Acad. Sci. USA 74, 3419–3423.PubMedCrossRefGoogle Scholar
  38. 38.
    Hirozane, T., Matsumori, A., Furukawa, Y., Matsui, S., Matoba, Y., and Sasayama, S. (1997) Prolongation of murine cardiac allograft survival with vesnarinone.J. Mol. Cell Cardiol. 29, 67–76.PubMedCrossRefGoogle Scholar
  39. 39.
    Erdogan, S. and Houslay, M. D. (1997) Challenge of human Jurkat T-cells with the adenylate cyclase activator forskolin elicits major changes in cAMP phosphodiesterase (PDE) expression by upregulating PDE-3 and inducing PDE-4D1 and PDE-4D2 splice variants as well as down-regulating a novel PDE-4A splice variant.Biochem. J. 321, 165–175.PubMedGoogle Scholar
  40. 40.
    Matousovic, K., Tsuboi, Y., Walker, H., Grande, J. P., and Dousa, T. P. (1997) Inhibitors of cyclic nucleotide phosphodiesterase isozymes block renal tubular cell proliferation induced by folic acid.J. Lab. Clin. Med. 130, in press.Google Scholar
  41. 41.
    Tam, F. W. K., Smith, J., Morel, D., Agarwal, S., and Pusey, C. D. (1996) Type IV phosphodiesterase inhibitor is effective in both prevention and treatment of progressive experimental glomerulonephritis.J. Am. Soc. Nephrol. 7, 1722.Google Scholar
  42. 42.
    Wilson, C. B. (1991) The renal response to immunologic injury, inThe Kidney, vol. 1 (Brenner, B. M. and Rector, F. C. Jr. eds.), W. B. Saunders, Philadelphia, pp. 1062–1181.Google Scholar
  43. 43.
    Levitzki, A. (1996) Targeting signal transduction for disease therapy.Curr. Opin. Cell Biol. 8, 239–244.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Thomas P. Dousa
    • 1
  1. 1.Renal Pathophysiology Laboratory, Department of Physiology a d Biophysics, Mayo Clinic and FoundationMayo Medical SchoolRochester

Personalised recommendations