Skip to main content
Log in

Signaling role of PDE isozymes in pathobiology of glomerular mesangial cells

Studies in vitro and in vivo

  • Feature Head
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Mesangial cells (MC) of renal glomeruli respond to immune-inflammatory injury by accelerated proliferation and generation of reactive oxygen metabolites (ROM). We studied in vivo and in vitro roles of cAMP-protein kinase A (PKA) signaling in modulation of these pathobiologic processes with focus on PDE isozymes. Mitogenic synthesis of DNA in mesangial cells grown in primary culture was blocked by forskolin and dibutyryl cyAMP. Incubation of MC with PDE-3 inhibitors, cilostamide and lixazione, inhibited (>50%) mitogenesis, whereas inhibitors of PDE-4, rolipram and denbufylline, caused little or no inhibition. Conversely, inhibitors of PDE-4 suppressed generation of ROM in MC, whereas inhibitors of PDE-3 had no effect. Incubation of mesangial cells with cilostamide or with rolipram increasedin situ activity of PKA, and effects of the two inhibitors were additive. PDE inhibitors also decreased activity of mitogen-activated protein kinase. The efficacy of PDE isozyme inhibitors (IC50) to suppress mitogenesis or ROM generation paralleled IC50 for inhibition of cAMP hydrolysis by extracts from mesangial cells. Administration of lixazinone or lixazione in combination with rolipram to rats with mesangial proliferative glomerulonephritis induced by antithymic serum suppressed proliferation of mesangial cells and also reduced other histopathologic manifestations of the disease. Based on these observations, we propose that in MC, a cAMP pool that is hydrolyzed by PDE-3 inhibits by negative crosstalk via activation of PKA, mitogen-activated protein kinase (MAPK) pathway, and mitogenesis; whereas cAMP pool linked to PDE-4 inhibits, also via activation of PKA, ROM generation in mesangial cells. Results also suggest that PDE isozyme inhibitors, in particular inhibitors of PDE-3, should be investigated for potential use for “signal transduction pharmacotherapy” of glomerulonephritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson, R. J. (1994) The glomerular response to injury: Progression or resolution?Kidney Int. 45, 1769–1782.

    Article  PubMed  CAS  Google Scholar 

  2. Sedor, J. R., Konieczkowski, M., Huang, S., Gronich, J. H., Nakazato, Y., Gordon, G., and King, C. H. (1993) Cytokines, mesangial cell activation and glomerular injury.Kidney Int. 43, S65-S70.

    CAS  Google Scholar 

  3. Dousa, T. P. (1985) Glomerular metabolism, inThe Kidney: Physiology and Pathophysiology (Seldin, D. W., and Giebisch, G., eds.), Raven, New York, pp. 645–667.

    Google Scholar 

  4. Mené, P., Simonson, M. S., and Dunn, M. J. (1989) Physiology of the mesangial cell.Physiol. Rev. 69, 1347–1424.

    PubMed  Google Scholar 

  5. Radeke, H. H., Meier, B., Topley, N., Floge, J., Habermehl, G. G., and Resch, K. (1990) Interleukin 1-α and tumor necrosis factor-α induce oxygen radical production in mesangial cells.Kidney Int. 37, 767–775.

    Article  PubMed  CAS  Google Scholar 

  6. Ryan, W. L. and Heidrick, M. L. (1974) Role of cyclic nucleotides in cancer, inAdvances in Cyclic Nucleotide Research, vol. 4 (Greengard, P. and Robison, G. A., eds.), Raven, New York, pp. 81–116.

    Google Scholar 

  7. Chlapowski, F. J., Kelly, L. A., and Butcher, R. W. (1975)Advances in Cyclic Nucleotide Research, vol. 6 (Greengard, P. and Robison, G. A., eds.), Raven, New York, pp. 245–338.

    Google Scholar 

  8. Cano, E. and Mahadevan, L. C. (1995) Parallel signal processing among mammalian MAPKs.TIBS 20, 117–122.

    PubMed  CAS  Google Scholar 

  9. Frodin, M., Peraldi, P., and Obberghen, E. V. (1994) Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells.J. Biol. Chem. 269, 6207–6214.

    PubMed  CAS  Google Scholar 

  10. Graves, L. M., Bornfeldt, K. E., Raines, E. W., Potts, B. C., MacDonald, S. G., Ross, R., and Krebs, E. G. (1993) Protein kinase A antagonizes platelet-derived growth factor-induced signalling by mitogen-activated protein kinase in human arterial smooth muscle cells.Proc. Natl. Acad. Sci. USA 90, 10,300–10,304.

    CAS  Google Scholar 

  11. Marx, J. (1993) Two major signal pathways linked.Science 262, 988,989.

    Article  PubMed  CAS  Google Scholar 

  12. Daum, G., Eisenmann-Tappe, I., Fries, H.-W., Troppmair, J., and Rapp, U. R. (1994) The ins and outs ofRaf-1 kinases.TIBS 19, 474–479.

    PubMed  CAS  Google Scholar 

  13. Häfner, S., Adler, H. S., Mischak, H. Janosch, P. A., Heidecker, G., Wolfman, A., Pippig, S. Lohse, M., Uefing, M., and Kolch, W. (1994) Mechanism of inhibition ofRaf-1 by protein kinase A.Mol. Cell Biol. 14, 6696–6703.

    PubMed  Google Scholar 

  14. Mischak, H., Seitz, T., Janosch, P., Eulitz, M., Steen, H., Schellerer, M., Philipp, A., and Kolch, W. (1996) Negative regulation ofRaf-1 by phosphorylation of serine 621.Mol. Cell Biol. 16, 5409–5418.

    PubMed  CAS  Google Scholar 

  15. Huang, C.-Y.F. and Ferrell, J. E., Jr. (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade.Proc. Natl. Acad. Sci. USA 93, 10,078–10,083.

    CAS  Google Scholar 

  16. Ferrell, J. E., Jr. (1996) Tripping the switch fantastic: How a protein kinase cascade can convert graded inputs into switch-like outputs.TIBS 21, 460–466.

    PubMed  CAS  Google Scholar 

  17. Matousovic, K., Grande, J. P., Chini, C. S., Chini, E. N., and Dousa, T. P. (1995) Inhibitors of cyclic nucleotide phosphodiesterase isozymes type-III and type-IV suppress proliferation of rat mesangial cells.J. Clin. Invest. 96, 401–410.

    PubMed  CAS  Google Scholar 

  18. Chini, E. N., Choi, E., Grande, J. P., Burnett, J. C., and Dousa, T. P. (1995) Adrenomedullin suppresses mitogenesis in rat mesangial cells via cAMP pathway.Biochem. Biophys. Res. Commun. 215, 868–873.

    Article  PubMed  CAS  Google Scholar 

  19. Chini, C. C. S., Grande, J. P., Chini, E. N., and Dousa, T. P. (1997) Compartmentalization of cAMP signaling in mesangial cells by phosphodiesterase isozymes PDE-3 and PDE-4. Regulation of superoxidation and mitogenesis.J. Biol. Chem. 272, 9854–9859.

    Article  PubMed  CAS  Google Scholar 

  20. Yamamoto, T. and Wilson, C. B. (1987) Quantitative and qualitative studies of antibody-induced mesangial cell damage in the rat.Kidney Int. 32, 514–525.

    Article  PubMed  CAS  Google Scholar 

  21. Bagchus, W. M., Hoedemaeker, P. J., Rozing, J., and Bakker, W. W. (1986) Glomerulonephritis induced by monoclonal anti-Thy-1.1 antibodies. A sequential histological and ultrastructural study in the rat.Lab. Invest. 55, 680–687.

    PubMed  CAS  Google Scholar 

  22. Gapstur, S. M., Homma, S., and Dousa, T. P. (1988) cAMP-binding proteins in medullary tubules from rat kidney: Effect of ADH.Am. J. Physiol. 255, F292-F300.

    PubMed  CAS  Google Scholar 

  23. Tsuboi, Y., Shankland, S. J., Grande, J. P., Walker, H. J., Johnson, R. J., and Dousa, T. P. (1996) Suppression of mesangial proliferation glomerulonephritis development in rats by inhibitors of cAMP phosphodiesterase isozymes types III and IV.J. Clin. Invest. 98, 262–270.

    Article  PubMed  CAS  Google Scholar 

  24. Tsuboi, Y., Shankland, S. J., Grande, J. P., Walker, H. J., Johnson, R. J., and Dousa, T. P. (1996) Antagonist o cAMP phosphodiesterase isozyme PDE-III blocks development of proteinuria, mesangial cells (MC) proliferation and phenotypic transformation in mesangioproliferative glomerulonephritis (MSGN) elicited by antithymic serum (ATS) in rats.J. Am. Soc. Nephrol. 7, 1724.

    Google Scholar 

  25. Manganiello, V. C. and Elks, M. L. (1986) Regulation of particulate cAMP phosphodiesterase activity in 3T3-L1 adipocytes: the role of particulate phosphodiesterase in the antilipolytic action of insulin, inMechanisms of Insulin Action (Belfrage, P., Donnér, J., and Strålfors, P., eds.), Elsevier, pp. 147–166.

  26. Elks, M. L. and Manganiello, V. C. (1984) Selective effects of phosphodiesterase inhibitors on different phosphodiesterases, adenosine 3′, 5′-monophosphate metabolism, and lipolysis in 3T3-L1 adipocytes.Endocrinology 115, 1262–1268.

    Article  PubMed  CAS  Google Scholar 

  27. Conti, M., Nemoz, G., Sette, C., and Vincini, E. (1995) Recent progress in understanding the hormonal regulation of phosphodiesterases.Endocr. Rev. 16, 370–389.

    Article  PubMed  CAS  Google Scholar 

  28. Beavo, J. A. (1995) Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms.Physiol. Rev. 75, 725–748.

    PubMed  CAS  Google Scholar 

  29. Manganiello, V. C., Murata, T., Taira, M., Belfrage, P., and Degerman, E. (1995) Perspectives in biochemistry and biophysics. Diversity in cyclic nucleotide phosphodiesterase isozyme families.Arch Biochem. Biophys. 322, 1–13.

    Article  PubMed  CAS  Google Scholar 

  30. Müller, T., Engels, P., and Fozard, J. R. (1996) Subtypes of the type 4 cAMP phosphodiesterases: Structure, regulation and selective inhibition.TIPS 17, 294–298.

    PubMed  Google Scholar 

  31. Smith, K. J., Scotland, G., Beattie, J., Trayer, I. P., and Houslay, M. D. (1996) Determination of the structure of the N-terminal splice region of the cyclic AMP-specific phosphodiesterase RD1 (RNPDE-4A1) BY 1H NMR and identification of the membrane association domain using chimeric constructs.J. Biol. Chem. 271, 16,703–16,711.

    CAS  Google Scholar 

  32. O'Connell, J. C., McCllum, J. F., McPhee, I., Wakefield, J., Houslay, E. S., Wishart, W., Bolger, G., Frame, M., and Houslay, M. D. (1996) The SH3 domain of Src tyrosyl protein kinase interacts with the N-terminal splice region of the PDE-4A cAMP-specific phosphodiesterase RPDE-6 (RNPDE-4A5).Biochem. J. 318, 255–262.

    PubMed  Google Scholar 

  33. Sumimoto, H., Kage, Y., Nunoi, H., Sasaki, H., Nose, T., Fukumaki, Y., Ohno, M., Minakami, S., and Takeshige, K. (1994) Role Src homology 3 domains in assembly and activation of the phagocyte NADPH Oxidase.Proc. Natl. Acad. Sci. USA 91, 5345–5349.

    Article  PubMed  CAS  Google Scholar 

  34. Leto, T. L., Adams, A. G., and de Mendez, I. (1994) Assembly of the phagocyte NADPH oxidase: Binding of Src homology 3 domains to proline-rich targets.Proc. Natl. Acad. Sci. USA 91, 10,650–10,654.

    Article  CAS  Google Scholar 

  35. Spaulding, S. W. (1993) The ways in which hormones change cyclic adenosine 3′, 5′ monophosphate-dependent protein kinase subunits, and how such changes affect cell behavior.Endocr. Rev.,14, 632–650.

    Article  PubMed  CAS  Google Scholar 

  36. Scott, J. D. and McCartney, S. (1994) Localization of A-kinase through anchoring proteins.Mol. Endocrinol. 8, 5–11, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Dufau, M. L., Tsuruhara, T., Horner, K. A., Podesta, E., and Catt, K. J. (1977) Intermediate role of adenosine 3′, 5′-cyclic monophosphate and protein kinase during gonadotropin-induced steroidogenesis in testicular interstitial cells.Proc. Natl. Acad. Sci. USA 74, 3419–3423.

    Article  PubMed  CAS  Google Scholar 

  38. Hirozane, T., Matsumori, A., Furukawa, Y., Matsui, S., Matoba, Y., and Sasayama, S. (1997) Prolongation of murine cardiac allograft survival with vesnarinone.J. Mol. Cell Cardiol. 29, 67–76.

    Article  PubMed  CAS  Google Scholar 

  39. Erdogan, S. and Houslay, M. D. (1997) Challenge of human Jurkat T-cells with the adenylate cyclase activator forskolin elicits major changes in cAMP phosphodiesterase (PDE) expression by upregulating PDE-3 and inducing PDE-4D1 and PDE-4D2 splice variants as well as down-regulating a novel PDE-4A splice variant.Biochem. J. 321, 165–175.

    PubMed  CAS  Google Scholar 

  40. Matousovic, K., Tsuboi, Y., Walker, H., Grande, J. P., and Dousa, T. P. (1997) Inhibitors of cyclic nucleotide phosphodiesterase isozymes block renal tubular cell proliferation induced by folic acid.J. Lab. Clin. Med. 130, in press.

  41. Tam, F. W. K., Smith, J., Morel, D., Agarwal, S., and Pusey, C. D. (1996) Type IV phosphodiesterase inhibitor is effective in both prevention and treatment of progressive experimental glomerulonephritis.J. Am. Soc. Nephrol. 7, 1722.

    Google Scholar 

  42. Wilson, C. B. (1991) The renal response to immunologic injury, inThe Kidney, vol. 1 (Brenner, B. M. and Rector, F. C. Jr. eds.), W. B. Saunders, Philadelphia, pp. 1062–1181.

    Google Scholar 

  43. Levitzki, A. (1996) Targeting signal transduction for disease therapy.Curr. Opin. Cell Biol. 8, 239–244.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dousa, T.P. Signaling role of PDE isozymes in pathobiology of glomerular mesangial cells. Cell Biochem Biophys 29, 19–34 (1998). https://doi.org/10.1007/BF02737826

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737826

Index Entries

Navigation