Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 25, Issue 1, pp 59–77 | Cite as

Pulse propagation and superradiance

  • Jeng-Yih Su
Article

Summary

We give a theoretical description of optical-pulse propagation through a resonant medium and superradiance and use various methods to obtain analytic solutions for the semi-classical equations which have been extensively employed in quantum optics. A criterion for nonlinear absorption is given, which depends on the amplitude and the rise-time of the input pulse, and the lifetime of the excited state and the relaxation time of the medium. Intensity-dependent absorption, compression of pulse duration and light amplification in saturable absorbers are demonstrated. We show that saturation occurs for an intense incident radiation field such that the medium becomes an optically thin system. Saturation also occurs for a long-rise-time incident pulse as shown in the study of propagation of step-function pulses. We obtain the maximal gain per unit length, and the maximal amplification and emission from a superradiant state which is only linearly proportional to the length of the medium, instead of an exponential dependence which would need so large an energy that the medium cannot provide it. We calculate the co-operative decay lifetime, the half-width of the Fourier spectrum and the field intensity of the co-operatively emitted radiation for certain cases. We also investigate self-induced transparency and derive an area theorem which is different from that of McCall and Hahn, though qualitatively similar to it.

Распространение импульса и сверхсветимость

Резюме

Мы предлагаем теоретическое описание распространения оптического импульса через резонансную среду и сверхсветимости. Мы используем различные методы для получения аналитических решений для полуклассических уравнений, которые широко применяются в квантовой оптике. Приводится критерий для нелинейного поглощения, который зависит от амплитуды и времени нарастания импульса на входе, времени жизни возбужденного состояния и времени релаксации среды. Показываются зависящие от интенсивности поглощение, сзатие длительности импульса и усиление света в насьщаемых поглотителях. Мы показываем, что насыщение имеет место для таких интенсивных падающих полей излучения, что среда становится оптически тонкой системой. Как показано при исследовании распространения импульсов в виде ступенчатойфункции, насыщение имеет место для больших времен нарастания начального импульса. Мы получаем максимальное прирашение на единицу длины, максимаИьное усиление и излучение из сверхизлучающего состояния, которое оказывается только линейно пропорциональным длине среды, вместо экспоненциальной зависимости, которая потребовала бы большого количества энергии, которое среда не может обеспечить. Мы вычисляем время кооперативного распада, полуширину фурье-спектра и интенсивность поля кооперативно испущенного излучения для некоторых случаев. Мы также исследуем самоиндуцированную прозрачность и выводим теорему, которая отличается от теоремы Мак Колла и Хана, хотя качественно аналогична ей.

Riassunto

Si dà una descrizione teorica della propagazione di un impulso ottico attraverso un mezzo risonante e della superradianza e si usano vari metodi per ottenere soluzioni analitiche per le equazioni semiclassiche che sono state ampiamente usate nell’ottica quantistica. Si dà un criterio per l’assorbimento non lineare, che dipende dall’ampiezza e dal tempo di salita dell’impulso d’entrata, dalla vita media dello stato eccitato e dal tempo di rilassamento del mezzo. Si dimostrano l’assorbimento dipendente del tempo, la compressione della durata dell’impulso e l’amplificazione della luce in assorbenti saturabili. Si dimostra che la saturazione avviene per un campo di radiazione incidente intenso tale che il mezzo diventa un sistema otticamente sottile. Si ha anche saturazione per un impulso incidente con lungo tempo di salita come è dimostrato nello studio della propagazione di impulsi con funzione a scalini. Si ottiene il guadagno massimo per unità di lunghezza e la massima amplificazione ed emissione per uno stato superradiante che è solo linearmente proporizonale alla lunghezza del mezzo, invece di una dipendenza esponenziale che avrebbe bisogno di un’energia così grande che il mezzo non è in grado di fornirla. Si calcola in alcuni casi la vita media del decadimento cooperativo, la semiampiezza dello spettro di Fourier e l’intensità di campo della radiazione emessa in cooperazione. Si studia anche la trasparenza autoindotta e si deduce un teorema di superficie che è diverso da quello di McCall e Hahn, quantunque qualitativamente simile ad esso.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    G. L. Lamb jr.:Rev. Mod. Phys.,43, 99 (1971);b)P. G. Kryukov andV. S. Letokhov:Sov. Phys. Usp.,12, 641 (1970).MathSciNetADSCrossRefGoogle Scholar
  2. (2).
    S. Stenholm:Phys. Rep.,6, 1 (1973). See alsob)C. R. Stroud jr.,J. H. Eberly, W. L. Lama andL. Mandel:Phys. Rev. A,5, 1094 (1972);c)F. Haake andR. J. Glauber:Phys. Rev. A,5, 1457 (1972).ADSCrossRefGoogle Scholar
  3. (3).
    R. P. Feynman, F. L. Vernon andR. W. Hellworth:Journ. Appl. Phys.,28, 49 (1957).ADSCrossRefMATHGoogle Scholar
  4. (4).
    F. T. Arecchi andR. Bonifacio:IEEE Journ. Quantum Electron.,1, 169 (1965).ADSCrossRefGoogle Scholar
  5. (5).
    C. L. Tang andB. D. Silverman: inPhysics of Quantum Electronics, edited byP. L. Kelly, B. Lax andP. E. Tannewald (New York, N. Y., 1966).Google Scholar
  6. (6).
    W. E. Lamb jr.:Phys. Rev.,134, A 1429 (1964).ADSCrossRefGoogle Scholar
  7. (7).
    A. Icsevgi andW. E. Lamb jr.:Phys. Rev.,185, 517 (1969).MathSciNetADSCrossRefGoogle Scholar
  8. (8).
    S. L. McCall andE. L. Hahn:Phys. Rev.,183, 457 (1969).ADSCrossRefGoogle Scholar
  9. (9).
    For a review of light amplification see ref. (1b).ADSCrossRefGoogle Scholar
  10. (10).
    R. H. Dicke:Phys. Rev.,93, 99 (1954).ADSCrossRefMATHGoogle Scholar
  11. (11).
    A. J. De Maria, W. H. Glenn jr.,M. J. Brienza andM. E. Mack:Proceedings of the IEEE,57, 2 (1969)CrossRefGoogle Scholar
  12. (12).
    a)B. A. Lengyel:Lasers (New York, N. Y., 1971);b)P. P. Sorokin andJ. R. Lankard:IBM Journ. Res. Dev.,10, 162 (1966);P. P. Sorokin, J. R. Lankard, E. C. Hammond andV. L. Moruzzi:IBM Journ. Res. Dev.,11, 130 (1967).Google Scholar
  13. (13).
    a)H. M. Gibbs andR. E. Slusher:Phys. Rev. A,6, 2326 (1972);b)R. E. Slusher andH. M. Gibbs:Phys. Rev. A,5, 1634 (1972).ADSCrossRefMATHGoogle Scholar
  14. (14).
    a)M. D. Crisp:Phys. Rev. A,1, 1604 (1970);b)M. D. Crisp:Phys. Rev. A,5, 1365 (1972).ADSCrossRefGoogle Scholar
  15. (15).
    N. G. Basov, R. B. Ambartsumyan, V. S. Zuev, P. G. Kryukov andV. S. Letokhov:Sov. Phys. JETP,23, 16 (1966).ADSGoogle Scholar
  16. (16).
    D. A. Hutchinson andH. G. Hameka:Journ. Chem. Phys.,41, 2006 (1964);E. A. Power:Journ. Chem. Phys.,46, 4297 (1967);C. S. Chang andP. Stehle:Phys. Rev. A,4, 630 (1971).ADSCrossRefGoogle Scholar
  17. (17).
    a)I. D. Abella, N. A. Kurnit andS. R. Hartmann:Phys. Rev.,141, 391 (1966);b)F. T. Arecchi andE. Courtens:Phys. Rev. A,2, 1730 (1970);c)J. H. Eberly andN. E. Rehler:Phys. Lett.,29 A, 142 (1969);Phys. Rev. A,2, 1607 (1970);d)A. Compaan andI. D. Abella:Phys. Rev. Lett.,27, 23 (1971);e)A. M. Pont Goncalves, A. Tallet andR. Lefebvre:Phys. Rev.,188, 576 (1969);f)R. Bonifacio, P. Schwendiman andF. Haake:Phys. Rev. A,4, 302, 854 (1971);g)R. Friedberg andS. R. Hartmann:Phys. Lett.,38 A, 227 (1972).ADSCrossRefGoogle Scholar
  18. (18).
    F. A. Hopf andM. O. Scully:Phys. Rev.,179, 399 (1969).ADSCrossRefGoogle Scholar
  19. (19).
    a)D. C. Burnham andR. Y. Chiao:Phys. Rev.,188, 667 (1969);b)S. L. McCall jr.: Ph. D. Thesis, University of California, Berkeley, Cal., 1968 (unpublished).ADSCrossRefMATHGoogle Scholar
  20. (20).
    E. P. Adams:Smithsonian Mathematical Formulae and Tables of Elliptic Functions (Washington, D. C., 1939).Google Scholar
  21. (21).
    G. N. Watson:Theory of Bessel Functions (Cambridge, 1966).Google Scholar
  22. (22).
    S. L. McCall andE. L. Hahn:Phys. Rev. A,2, 861 (1970).ADSCrossRefGoogle Scholar
  23. (23).
    E. U. Condon andG. H. Shortley:Theory of Atomic Spectra (Cambridge, 1959).Google Scholar
  24. (24).
    B. Senitzky, G. Gould andS. Cutler:Phys. Rev.,130, 1465 (1963).ADSCrossRefGoogle Scholar
  25. (25).
    see ref. (19a,b)a.ADSCrossRefGoogle Scholar
  26. (25).
    Krylov, Bogoliubov andMitropolsky.V. A. Belinskii andI. M. Khalatnikov:Sov. Phys. JETP,29, 911 (1969)Google Scholar
  27. (27).
    E. T. Copson:Asymptotic Expansions (Cambridge, 1967).Google Scholar

Copyright information

© Società Italiana di Fisica 1975

Authors and Affiliations

  • Jeng-Yih Su
    • 1
  1. 1.Bell LaboratoriesMurray Hill

Personalised recommendations