Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 49, Issue 1, pp 45–54 | Cite as

The motion of spinning particles. post-Newtonian approximation in the Einstein-Cartan theory

  • D. Boccaletti
  • W. Agostini
  • P. Festa
Article

Summary

The equations of motion of spinning particles are obtained in the post-Newtonian approximation of the Einstein-Cartan theory. The starting point of the calculation is the Hehl combined equation and a semi-classical model is assumed for the system of spinning particles. Comparison is made with an analogous quantum result obtained in the context of Gupta quantization of the linearized Einstein theory.

Riassunto

Si ottengono le equazioni del moto di un sistema di particelle dotate di spin nell’approssimazione postnewtoniana della teoria di Einstein-Cartan. La base del calcolo è costituita dall’equazione combinata di Hehl, usando un modello semiclassico per il sistema di particelle, dotate di spin. Si confronta il risultato, ottenuto con uno analogo quantistico derivato nel contesto della quantizzazione di Gupta della teoria linearizzata di Einstein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    E. Cartan:Compt. Rend.,174, 593 (1922);Ann. Ec. Norm. Sup., (3)40, 325 (1923).MATHGoogle Scholar
  2. (2).
    For complete references seeF. W. Hehl:Gen. Rel. Grav.,4, 333 (1973).MathSciNetADSCrossRefMATHGoogle Scholar
  3. (3).
    F. W. Hehl, P. v. der Heyde andG. D. Kerlick:Phys. Rev. D,10, 1066 (1974);F. W. Hehl andP. v. der Heyde:Ann. Inst. H. Poincaré,19, 179 (1973).MathSciNetADSCrossRefGoogle Scholar
  4. (4).
    A. Papapetrou:Phil. Mag.,40, 937 (1949);F. Halbwachs:Théorie relativiste des fluides à spin (Paris, 1960).MathSciNetCrossRefMATHGoogle Scholar
  5. (5).
    L. Landau andE. Lifchitz:Théorie des champs (Moscou, 1970).Google Scholar
  6. (6).
    W. Arkuszewski, W. Kopczynski andW. N. Ponomariev:Ann. Inst. H. Poincaré,21, 89 (1974).MathSciNetGoogle Scholar
  7. (7).
    H. P. Robertson andT. W. Noonan:Relativity and Cosmology (Philadelphia, Pa., 1969), p. 269.Google Scholar
  8. (8).
    A. Trautman:Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys.,20, 895 (1972).Google Scholar
  9. (9).
    F. W. Hehl:Phys. Lett.,36 A, 225 (1971).MathSciNetADSCrossRefGoogle Scholar
  10. (10).
    A. Papapetrou:Proc. Roy. Soc.,209 A, 248 (1951).MathSciNetADSCrossRefGoogle Scholar
  11. (11).
    G. P. Kerlick:Phys. Rev. D,12, 3004 (1975).ADSCrossRefGoogle Scholar
  12. (12).
    A. Trautman:Nat. Phys. Sci.,242, 7 (1973).ADSCrossRefGoogle Scholar
  13. (13).
    B. M. Barker andR. F. O’Connell:Gen. Rel. Grav.,5, 555 (1974).CrossRefGoogle Scholar
  14. (14).
    B. M. Barker, S. N. Gupta andR. D. Haracz:Phys. Rev.,149, 1027 (1966).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1979

Authors and Affiliations

  • D. Boccaletti
    • 1
  • W. Agostini
    • 1
  • P. Festa
    • 1
  1. 1.Istituto di Matematica dell’UniversitàCittà UniversitariaRoma

Personalised recommendations