Journal of Evolutionary Biochemistry and Physiology

, Volume 36, Issue 4, pp 375–383 | Cite as

Midgut proteinases of the cockroachNauphoeta cinerea

  • E. N. Elpidina
  • K. S. Vinokurova
  • V. A. Gromenko
  • Yu. A. Rudenskaya
  • Ya. E. Dunaevskii
  • D. P. Zhuzhikov
Comparative and Ontogenic Biochemistry


The study of properties of proteolytic enzymes in midgut of imago of the cockroachNauphoeta cinerea Oliv. Has been carried out. It is shown that the total proteolytic activity of digestive proteases, measured with azocasein as substrate, is maximal at pH 11.5 both in the anterior and in the posterior parts of the midgut. The predominant part of this activity (67%) was present in the posterior part. Fractionation of preparation from the posterior part on a column with Sephadex G-50 and subsequent analysis of the activity in the obtained fractions using specificp-nitroanilide substrates and effects of activators and inhibitors of active center have allowed revealing three types of activity of serine proteinases and one cysteine proteinase. No activity of aspartic and metalloproteinases were detected. Among serine proteinases, one trypsin-like, one unusual SHdependent serine, one chymotrypsin-like, and not less than two enzymes hydrolyzing specific substrate of subtilisin were established. The fractionation of the preparation from the anterior part has allowed revealing only three proteinases that were similar by their properties to cysteine, SHdependent serine, and chymotrypsin-like ones in the posterior part of midgut. Their activity was lower in the anterior, than in the posterior part of the midgut. The probable causes of the low proteolytic activity in the anterior part of the midgut are discussed.


Serine Proteinase Cysteine Proteinase Anterior Part Posterior Part Evolutionary Biochemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dadd, R.H., Digestion in Insects,Chemical Zoology, New York; London: Acad., 1970, vol. 5, pp. 117–145.Google Scholar
  2. 2.
    Law, J.H., Dunn, P.E., and Kramer, K.J., Insect Proteases and Peptidases,Adv. Enzymol., 1977, vol. 45, pp. 389–425.PubMedGoogle Scholar
  3. 3.
    Applebaum, S.W., Biochemistry of Digestion,Comprehensive Physiol., Biochem. and Pharmacol. of Insects, Kerkut, G.A. and Gilbert, L.I., Eds., Oxford: Pergamon, 1985, vol. 4, pp. 279–311.Google Scholar
  4. 4.
    Christeller, J.T., Markwick, N.P., and Burgess, E.P.J., Midgut Proteinase Activities of Three Keratinolytic Larvae,Hofmannophila pseudospretella, Tineola bisselliella, andAnthrenocerus australis and the Effect of Proteinase Inhibitors on Proteolysis,Arch. Insect Biochem. Physiol., 1994, vol. 25, pp. 159–173.CrossRefGoogle Scholar
  5. 5.
    Ortego, F., Novillo, C, and Castanera, P., Characterization and Distribution of Digestive Proteases of the Stalk Corn Borer,Sesamia nonagrioides Lef. (Lepidoptera: Noctuidae),Arch. Insect Biochem. Physiol., 1996, vol. 33, pp. 163–180.CrossRefGoogle Scholar
  6. 6.
    McGhie, T.K., Christeller, J.T., Ford, R., and Allsopp, P.G., Characterization of Midgut Proteinase Activities of White Grubs:Lepidiota noxia, Lepidiota negatoria andAntitrogus consanguineus (Scarabaeidae, Melolonthini), Arch. Insect Biochem. Physiol, 1995, vol. 28, pp. 351–363.CrossRefGoogle Scholar
  7. 7.
    Murdoch, L.L., Brookhart, G., Dunn, P.E.,et al, Cysteine Digestive Proteinases in Coleoptera,Comp. Biochem. Physiol, 1987, vol. 87B, pp. 783–787.Google Scholar
  8. 8.
    Thie, N.M.R. and Houseman, J.G., Cysteine and Serine Proteolytic Activities in Larval Midgut of Yellow Mealworm,Tenebrio molitor L. (Coleoptera: Tenebrionidae),Insect Biochem., 1990, vol. 20, pp. 741–744.CrossRefGoogle Scholar
  9. 9.
    Sumenkova, V.V. and Yazlovetskii, LG., Digestive Proteinases of Predatory BugsPodisus maculiventris andPerillus bioculatus, Zh. Evol. Biokhim. Fiziol., 1994, vol. 30, pp. 632–642.Google Scholar
  10. 10.
    Houseman, J.G. and Downe, A.E.R., Identification and Partial Characterization of Digestive Proteinases from Two Species of Bedbug(Hemiptera, Cimicidae), Can. J. Zool, 1982, vol. 8, pp. 1837–1840.CrossRefGoogle Scholar
  11. 11.
    Silva, C.P. and Xavier-Filho, J., Comparison between the Levels of Aspartic and Cysteine Proteinases of the Larval Midguts ofCallosobruchus maculatus (F.) andZabrotes subfasciatus (Boh.) (Coleoptera: Bruchidae),Comp. Biochem. Physiol, 1991, vol. 99B, pp. 529–533.Google Scholar
  12. 12.
    Houseman, J.G. and Downe, A.E.R., Catepsine D-Like Activity in the Posterior Midgut of Hemipteran Insects,Comp. Biochem. Physiol, 1983, vol. 75B, pp. 509–512.Google Scholar
  13. 13.
    Ward, C.W., Resolution of Proteases in the Keratinolytic Larvae of the Webbing Clothes Moth,Aust. J. Biol. Sci., 1975, vol. 28, pp. 1–23.PubMedGoogle Scholar
  14. 14.
    Day, M.F. and Pawning R.F., A Study of Digestion in Certain Insects,Aust. J. Sci. Res., 1949, vol. 2B, pp. 175–215.Google Scholar
  15. 15.
    Rao, B.R. and Fisk, F.W., Trypsin Activity Associated with Reproductive Development in the CockroachNauphoeta cinerea (Blattaria),J. Insect Physiol., 1965, vol. 11, pp. 961–971.PubMedCrossRefGoogle Scholar
  16. 16.
    Engelmann, F. and Geraerts, W.P.M., The Proteases and the Protease Inhibitor in the Midgut ofLeucophaea maderae, J. Insect Physiol, 1980, vol. 26, pp. 703–710.CrossRefGoogle Scholar
  17. 17.
    Baumann, E., Isolation and Partial Characterization of a Chymotrypsin-Like Endoprotease from Cockroach Intestinal System,Insect Biochem., 1990, vol. 20, pp. 761–768.CrossRefGoogle Scholar
  18. 18.
    Erlanger, B.F., Kokowsky, N., and Cohen, W., The Preparation and Properties of Two New Chromogenic Substrates of Trypsin,Arch. Biochem. Biophys., 1961, vol. 95, pp. 271–278.PubMedCrossRefGoogle Scholar
  19. 19.
    Christeller, J.T., Laing, W.A., Shaw, B.D., and Burgess, E.P.J., Characterization and Partial Purification of the Digestive Proteases of the Black Field Cricket,Teleogryllus commodus (Walker): Elastase Is a Major Component,Insect Biochem., 1990, vol. 20, pp. 157–164.CrossRefGoogle Scholar
  20. 20.
    Zwilling, R., Zur Evolution der Endopeptidasen. IV. σ- und β-Protease ausTenebrio molitor, Hoppe-Seyler’s Z. Physiol Chem., 1968, vol. 349, pp. 326–332.PubMedGoogle Scholar
  21. 21.
    Giebel, W., Zwilling, R., and Phleiderer, G., The Evolution of Endopeptidases. XII. The Proteolytic Enzymes of the Honeybee(Apis mellifica L.),Comp. Biochem. Physiol, 1971, vol. 38B, pp. 197–210.Google Scholar
  22. 22.
    Siden-Kiamos, I., Skavdis, G., Rubio, J.,et al, Isolation and Characterization of Three Serine Protease Genes in the MosquitoAnopheles gambiae, Insect Mol Biol, 1996, vol. 5, pp. 61–71.PubMedGoogle Scholar
  23. 23.
    Lehane, S.M., Assinder, S.J., and Lehane, M.J., Cloning, Sequencing, Temporal Expression and Tissue—Specificity of Two Serine Proteases from the Midgut of the Blood-Feeding FlyStomoxys calcitrans, Eur. J. Biochem., 1998, vol. 25, pp. 290–296.CrossRefGoogle Scholar
  24. 24.
    Zhuzhikov, D.P., Inhibitor of Serine Proteinases in the Gut of the CockroachNauphoeta cinerea Oliv.,Zh. Evol. Biokhim. Fiziol, 1997, vol. 33, pp. 592–598.Google Scholar
  25. 25.
    Zhuzhikov, D.P., Development of Larvae of the CockroachNauphoeta cinerea Oliv, at Different Diets,Vestn. MGU, Ser. Biol, 1997, no. 4, pp. 35–41.Google Scholar
  26. 26.
    Zhuzhikov, D.P., Adaptive Abilities of the CockroachNauphoeta cinerea (Blattoptera, Blaberidae) under Effect of the Soybean Inhibitor of Trypsin,Zool. Zh., 1999, vol. 78, no. 11, pp. 1–6.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • E. N. Elpidina
    • 1
  • K. S. Vinokurova
    • 1
  • V. A. Gromenko
    • 1
  • Yu. A. Rudenskaya
    • 1
  • Ya. E. Dunaevskii
    • 1
  • D. P. Zhuzhikov
    • 1
  1. 1.Lomonosov State UniversityMoscowRussia

Personalised recommendations