Journal of Molecular Neuroscience

, Volume 9, Issue 2, pp 75–92 | Cite as

Melatonin alters the metabolism of the β-amyloid precursor protein in the neuroendocrine cell line PC12

  • Weihong Song
  • Debomoy K. Lahiri


The deposition of amyloid plaques in brain parenchyma is one of the major pathological hallmarks of Alzheimer’s disease (AD). The amyloid in senile plaques is composed of the amyloid β-peptide (Aβ) of 39–43 amino acid residues derived from a larger β-amyloid precursor protein (βAPP). Soluble derivatives of βAPP (sAPP) lacking the cytoplasmic tail, transmembrane domain, and a small portion of the extracellular domain are generated proteolytically by “secretases.” Using cell cultures, the authors analyzed the level of sAPP in neuroblastoma and pheochromocytoma (PC12) cells by immunoblotting samples from conditioned media and cell lysates. Normal levels of secretion of sAPP into conditioned media were severely inhibited by treating cells with melatonin (3–4 mM). The inhibitory effect of melatonin on the secretion of sAPP can be reversed. When the cells that were pretreated with melatonin for 10 h were washed, the normal level of secretion of sAPP was restored. Northern blot analyses indicated that the treatment of PC12 cells with melatonin resulted in a significant decrease in the level of mRNA encoding βAPP, β-actin, and glyceraldehyde-3-phosphate dehydrogenase, and that the treatment of a human neuroblastoma cell line with melatonin resulted in no change in levels of these messages. The secretion of sAPP into the conditioned medium was substantially reduced in the differentiated cells similar to reductions observed in melatonin-treated undifferentiated PC12 cells. Melatonin was found to potentiate the nerve growth factor-mediated differentiation in PC12 cells at 24 h. Taken together, these data suggest that melatonin regulates the metabolism of βAPP and other housekeeping genes in a cell-type specific manner, and that melatonin accelerates the early process of neuronal differentiation.

Index Entries

Pineal gland hormone melatonin β-amyloid precursor protein neuroblastoma cells PC12 cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson J. P., Chen Y., Kim K. S., and Robakis N. K. (1992) An alternative secretase cleavage produces soluble Alzheimer amyloid precursor protein containing a potentially amyloidogenic sequence.J. Neurochem. 59, 2328–2331.PubMedCrossRefGoogle Scholar
  2. Arcari P., Martinelli R., and Salvatore F. (1984) The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species.Nucleic Acids Res. 12, 9179–9189.PubMedCrossRefGoogle Scholar
  3. Arendt J. (1995)Melatonin and the Mammalian Pineal Gland. Chapman and Hill, London.Google Scholar
  4. Arendt J. and Broadway J. (1987) Light and melatonin as zeitgebers in man.Chronobiol. Int. 4, 273–282.PubMedGoogle Scholar
  5. Axelrod J. (1974) The pineal gland: a neurochemical transducer.Science 184, 1341–1348.PubMedCrossRefGoogle Scholar
  6. Becker-Andre M., Wiesenberg I., Schaeren-Wiemers N., Andre E., Missbach M., Saurat J. H., and Carlberg C. (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily.J. Biol. Chem. 269, 28,531–28,534.Google Scholar
  7. Behl C., Widmann M., Trapp T., and Holsboer F. (1995) 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro.Biochem. Biophys. Res. Commun. 216, 473–482.PubMedCrossRefGoogle Scholar
  8. Benitez-King G., Huerto-Delgadillo L., and Anton-Tay F. (1991) Melatonin effects on the cytoskeletal organization of MDCK and neuroblastoma N1E-115 cells.Brain Res. 557, 289–292.PubMedCrossRefGoogle Scholar
  9. Birge S. J. (1996) Is there a role for estrogen replacement therapy in the prevention and treatment of dementia?J. Amer. Geriatr. Soc. 44, 865–870.Google Scholar
  10. Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  11. Buxbaum J. D., Oishi M., Chen H. I., Pinkas-Kramarski R., Jaffe E. A., Gandy S. E., and Greengard P. (1992) Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor.Proc. Natl. Acad. Sci. USA 89, 10,075–10,078.CrossRefGoogle Scholar
  12. Cardinali D. P. and Freire F. (1975) Melatonin effects on brain. Interaction with microtubule protein, inhibition of fast axoplasmic flow and induction of crystaloid and tubular formations in the hypothalamus.Mol. Cell. Endocrinol. 2, 317–330.PubMedCrossRefGoogle Scholar
  13. Checler F. (1995) Processing of the β-amyloid precursor protein and its regulation in Alzheimer’s disease.J. Neurochem. 65, 1431–1444.PubMedCrossRefGoogle Scholar
  14. Cos S., Verduga R., Fernandez-Viadero C., Megias M., and Crespo D. (1996) Effects of melatonin on the proliferation and differentiation of human neuroblastoma cells in culture.Neurosci. Letts. 216, 113–116.Google Scholar
  15. Dell’Antone P., Bragadin M., and Zatta P. (1995) Anticholinesterase drugs: tacrine but not physostigmine, accumulates in acidic compartments of the cells.Biochim. Biophys. Acta 1270, 137–141.PubMedGoogle Scholar
  16. Dori D., Casale G., Solerte S. B., Fioravanti M., Migliorati G., Cuzzoni G., and Ferrari E. (1994) Chrono-neuroendocrinological aspects of physiological aging and senile dementia.Chronobiology 21, 121–126.Google Scholar
  17. Dubocovich M. L. (1995) Melatonin receptors: are there multiple subtypes?Trends Pharmacol. Sci. 16, 50–56.PubMedCrossRefGoogle Scholar
  18. Efthimiopoulos S., Vassilacopoulou D., Ripellino J. A., Tezapsidis N., and Robakis N. K. (1996) Cholinergic agonists stimulate secretion of soluble full-length amyloid precursor protein in neuroendocrine cells.Proc. Natl. Acad. Sci. USA 93, 8046–8050.PubMedCrossRefGoogle Scholar
  19. Esch F. S., Keim P. S., Beattie E. C., Blacher R. W., Culwell A. R., Oltersdorf T., McClure D., and Ward P. J. (1990) Cleavage of amyloid beta-peptide during constitutive processing of its precursor.Science 248, 1122–1124.PubMedCrossRefGoogle Scholar
  20. Estus S., Golde T. E., Kunishita T., Blades D., Lowery D., Eisen M., Usiak M., Qu X., Tabira T., Greenberg B. D., and Younkin S. G. (1992) Potentially amyloidogenic, carboxyl-terminal derivatives of the amyloid protein precursor.Science 255, 726–728.PubMedCrossRefGoogle Scholar
  21. Green L. A. and Tischler A. J. (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.Proc. Natl. Acad. Sci. USA 73, 2424–2428.CrossRefGoogle Scholar
  22. Haass C., Koo E. H., Mellon A., Hung A. Y., and Selkoe D. J. (1992) Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments.Nature 357, 500–503.PubMedCrossRefGoogle Scholar
  23. Hay R., Caputo J., Chen T. R., Macy M., McClintock P., and Reid Y. (1992)ATCC Collection Catalogue of Cell Lines and Hybridomas, 7th ed., ATCC, Rockville, MD.Google Scholar
  24. Hilbich C., Monning U., Grund C., Masters C. L., and Beyreuther K. (1993) Amyloid-like properties of peptides flanking the epitope of amyloid precursor protein-specific monoclonal antibody 22C11.J. Biol. Chem. 268, 26,571–26,577.Google Scholar
  25. Hinton D. R., Sadun A. A., Blanks J. C., and Miller C. A. (1986) Optic-nerve degeneration in Alzheimer’s disease.New Engl. J. Med. 315, 485–487.PubMedCrossRefGoogle Scholar
  26. Hisama F. M. and Schllenberg G. D. (1996) Progress in molecular genetics of Alzheimer’s disease.Neuroscientist 2, 3–6.Google Scholar
  27. Iovanna J., Dusetti N., Cadenas B., and Cardinali D. P. (1990) Time-dependent effect of melatonin on actin mRNA levels and incorporation of 35S-methionine into actin and proteins by the rat hypothalamus.J. Pineal Res. 9, 51–63.PubMedCrossRefGoogle Scholar
  28. Jaffe A. B., Toran-Allerand C. D., Greengard P., and Gandy S. E. (1994) Estrogen regulates metabolism of Alzheimer amyloid beta precursor protein.J. Biol. Chem. 269, 13,065–13,068.Google Scholar
  29. Kim K. S., Miller D. L., Sapienze B. J., Chang C. J., Grundke-Iqbal I., Currie J. R., and Wisniewski H. M. (1988) Production and characterization of monoclonal antibodies to synthetic cerebral vascular amyloid peptide.Neurosci. Res. Commun. 2, 121–130.Google Scholar
  30. Klein D. C. (1979)Endocrine Rhythms. Raven, New York.Google Scholar
  31. Knepp V. M., Whatley J. L., Muchnik A., and Calderwood T. S. (1996) Identification of antioxidants for prevention of peroxide-mediated oxidation of recombinant human ciliary neurotrophic factor and recombinant human nerve growth factor.PDA J. Pharmaceut. Sci. Technol. 50, 163–171.Google Scholar
  32. Knops J., Lieberburg I., and Sinha S. (1992) Evidence for a nonsecretory, acidic degradation pathway for amyloid precursor protein in 293 cells.J. Biol. Chem. 267, 16,022–16,024.Google Scholar
  33. Kuentzel S. L., Ali S. M., Altman R. A., Greenberg B. D., and Raub T. J. (1993) The Alzheimer β-amyloid protein precursor/protease nexin-II is cleaved by secretase in atrans-Golgi secretory compartment in human neuroglioma cells.Biochem. J. 295, 367–378.PubMedGoogle Scholar
  34. Lahiri D. K. (1994a) Effect of ionophores on the processing of the beta-amyloid precursor protein in different cell lines.Cell. Mol. Neurobiol. 14, 297–313.PubMedCrossRefGoogle Scholar
  35. Lahiri D. K. (1994b) Reversibility of the effect of tacrine on the secretion of the beta-amyloid precursor protein in cultured cells.Neurosci. Letts. 181, 149–152.CrossRefGoogle Scholar
  36. Lahiri D. K. and Farlow M. R. (1996) Differential effect of tacrine and physostigmine on the secretion of the beta-amyloid precursor protein in cell lines.J. Mol. Neurosci. 7, 41–49.PubMedGoogle Scholar
  37. Lahiri D. K., Nall C., and Farlow M. R. (1992) The cholinergic agonist carbachol reduces intracellular amyloid precursor protein in PC12 and C6 cells.Biochem. Int. 28, 853–860.PubMedGoogle Scholar
  38. Lahiri D. K., Lewis S., and Farlow M. R. (1994) Tacrine alters the processing of beta-amyloid precursor protein in different cell lines.J. Neurosci. Res. 37, 777–787.PubMedCrossRefGoogle Scholar
  39. Leader D. P., Gall I., Campbell P., and Frischauf A. M. (1986) Isolation and characterization of cDNA clones from mouse skeletal muscle beta-actin mRNA.DNA 5, 235–238.PubMedCrossRefGoogle Scholar
  40. Lerchl A. (1994) Increased oxidation of pineal serotonin as a possible explanation for reduced melatonin synthesis in the aging Djungarian hamster (Phodopus sungorus).Neurosci. Letts. 176, 25–28.CrossRefGoogle Scholar
  41. Lewy A. J., Wehr T. A., Goodwin F. K., Newsome D. A., and Markey S. P. (1980) Light suppresses melatonin secretion in humans.Science 210, 1267–1269.PubMedCrossRefGoogle Scholar
  42. Manev H., Uz T., Kharlamov A., and Joo J. Y. (1996) Increased brain damage after stroke or excitotoxic seizures in melatonin-deficient rats.FASEB J. 10, 1546–1551.PubMedGoogle Scholar
  43. Marushige Y., Marushige K., and Koestner A. (1992) Growth inhibition of anaplastic glioma cells by nerve growth factor.Anticancer Res. 12, 2069–2073.PubMedGoogle Scholar
  44. Maurizi C. P. (1987) Dementia—the failure of hippocampal plasticity and dreams. Is there a preventative role for melatonin?Medical Hypotheses 24, 59–68.PubMedCrossRefGoogle Scholar
  45. Mishima K., Okawa M., Hishikawa Y., Hozumi S., Hori H., and Takahashi K. (1994) Morning bright light therapy for sleep and behavior disorders in elderly patients with dementia.Acta Psychiatr. Scand. 89, 1–7.PubMedCrossRefGoogle Scholar
  46. Nitsch R. M., Slack B. E., Wurtman R. J., and Growdon J. H. (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors.Science 258, 304–307.PubMedCrossRefGoogle Scholar
  47. Nitsch R. M., Farber S. A., Growdon J. H., and Wurtman R. J. (1993) Release of amyloid beta-protein precursor derivatives by electrical depolarization of rat hippocampal slices.Proc. Natl. Acad. Sci. USA 90, 5191–5193.PubMedCrossRefGoogle Scholar
  48. Pappolla M. A., Sos M., Omar R. A., Bick R. J., Hickson-Bick D. L., Reiter R. J., Efthimiopoulos S., and Robakis N. K. (1997) Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide.J. Neurosci. 17, 1683–1690.PubMedGoogle Scholar
  49. Parsell D. A. and Lindquist S. (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins.Ann. Rev. Genet. 27, 437–496.PubMedCrossRefGoogle Scholar
  50. Pierpaoli W. and Regelson W. (1992) Pineal control of aging: effect of melatonin and pineal grafting on aging mice.Proc. Natl. Acad. Sci. USA 91, 787–791.CrossRefGoogle Scholar
  51. Pierpaoli W. and Regelson W. (1994)The Melatonin Miracle: Revolutionary Discoveries About the Body’s Master Hormone. Simon and Schuster, New York.Google Scholar
  52. Prinz P. N., Vitaliano P. P., Vitiello M. V., Bokan J., Raskind M., Peskind E., and Gerber C. (1982) Sleep, EEG and mental function changes in senile dementia of the Alzheimer’s type.Neurobiol. Aging 3, 361–370.PubMedCrossRefGoogle Scholar
  53. Rabizadeh S., Bitler C. M., Butcher L. L., and Bredesen D. E. (1994) Expression of the low-affinity nerve growth factor receptor enhances beta-amyloid peptide toxicity.Proc. Natl. Acad. Sci. USA 91, 10,703–10,706.CrossRefGoogle Scholar
  54. Refolo L., Salton S. R., Anderson J. P., Mehta P., and Robakis N. K. (1989) Nerve and epidermal growth factors induce the release of the Alzheimer amyloid precursor from PC12 cell cultures.Biochem. Biophys. Res. Commun. 164, 664–670.PubMedCrossRefGoogle Scholar
  55. Reiter R. J. (1995a) The pineal gland and melatonin in relation to aging: a summary of the theories and of the data.Experiment. Gerontol. 30, 199–212.CrossRefGoogle Scholar
  56. Reiter R. J. (1995b) Oxidative processes and antioxidative defense mechanisms in the aging brain.FASEB J. 9, 526–533.PubMedGoogle Scholar
  57. Reppert S. M. and Weaver D. (1995) Melatonin madness.Cell 83, 1059–1062.PubMedCrossRefGoogle Scholar
  58. Reppert S. M., Weaver D. R., and Ebisawa T. (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses.Neuron 13, 1177–1185.PubMedCrossRefGoogle Scholar
  59. Reppert S. M., Weaver D. R., Rivkees S. A., and Stopa E. G. (1988) Putative melatonin receptors in a human biological clock.Science 242, 78–81.PubMedCrossRefGoogle Scholar
  60. Richards M. L. and Sadee W. (1986) Human neuroblastoma cell lines as models of catechol uptake.Brain Res. 384, 132–137.PubMedCrossRefGoogle Scholar
  61. Ross R. A., Spengler B. A., and Biedler J. L. (1983) Coordinate morphological and bio-chemical interconversion of human neuroblastoma cells.J. Nat. Cancer Inst. 71, 741–747.PubMedGoogle Scholar
  62. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., and Erlich H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.Science 239, 487–491.PubMedCrossRefGoogle Scholar
  63. Sambamurti K., Shioi J., Anderson J. P., Pappolla M. A., and Robakis N. K. (1992) Evidence for intracellular cleavage of the Alzheimer’s amyloid precursor in PC 12 cells.J. Neurosci. Res. 33, 319–329.PubMedCrossRefGoogle Scholar
  64. Sambrook J., Fritsch E. F., and Maniatis T. (1989)Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  65. Selkoe D. J. (1994) Normal and abnormal biology of the β-amyloid precursor protein.Ann. Rev. Neurosci. 17, 489–517.PubMedCrossRefGoogle Scholar
  66. Selkoe D. J. (1996) Amyloid beta-protein and the genetics of Alzheimer’s disease.J. Biol. Chem. 271, 18,295–18,298.Google Scholar
  67. Selkoe D. J. (1997) Alzheimer’s disease: genotypes, phenotypes, and treatments.Science 275, 630–631.PubMedCrossRefGoogle Scholar
  68. Seubert P., Oltersdorf T., Lee M. G., Barbour R., Blomquist C., Davis D. L., Bryant K., Fritz L. C., Galasko D., Thal L. J., et al. (1993) Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide.Nature 361, 260–263.PubMedCrossRefGoogle Scholar
  69. Sisodia S. S. (1992) Beta amyloid precursor protein cleavage by a membrane-bound protease.Proc. Natl. Acad. Sci. USA 89, 6075–6079.PubMedCrossRefGoogle Scholar
  70. Sisodia S. S., Koo E. H., Beyreuther K., Unterbeck A., and Price D. L. (1990) Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing.Science 248, 492–495.PubMedCrossRefGoogle Scholar
  71. Skene D. J., Vivien-Roels B., Sparks D. L., Hunsaker J. C., Pevet P., Ravid D., and Swaab D. F. (1990) Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease.Brain Research. 528, 170–174.PubMedCrossRefGoogle Scholar
  72. Slunt H. H., Thinakaran G., Koch C. V., Lo A. C. Y., Tanzi R. E., and Sisodia S. S. (1993) Expression of a ubiquitous, cross-reactive homologue of the mouse β-amyloid precursor protein (APP).J. Biol. Chem. 269, 2637–2644.Google Scholar
  73. Swabb D. F., Fliers E., and Partiman T. S. (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia.Brain Res. 342, 37–44.CrossRefGoogle Scholar
  74. Tanzi R. E., Gusella J. F., Watkins P. C., Bruns G. A. P., George-Hyslop P., Van Keuren M. L., Patterson D., Pagan S., Kurnit D. M., and Neve R. L. (1987) Amyloid β protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus.Science 235, 880–884.PubMedCrossRefGoogle Scholar
  75. Tate B., Aboody-Guterman K. S., Morris A. M., Walcott E. C., Majocha R. E., and Marotta C. A. (1992) Disruption of circadian regulation by brain grafts that overexpress Alzheimer beta/A4 amyloid.Proc. Natl. Acad. Sci. USA 89, 7090–7094.PubMedCrossRefGoogle Scholar
  76. Troy C. M. and Shelanski M. L. (1994) Down-regulation of copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells.Proc. Natl. Acad. Sci. USA 91, 6384–6387.PubMedCrossRefGoogle Scholar
  77. Wallace W. C., Lieberburg I., Schenk D., Vigo-Pelfrey C., Davis K. L., and Haroutunian V. (1995) Chronic elevation of secreted amyloid precursor protein in subcortically lesioned rats, and its exacerbation in aged rats.J. Neurosci. 15, 4896–4905.PubMedGoogle Scholar
  78. Wang A. M., Doyle M. V., and Mark D. F. (1989) Quantitation of mRNA by the polymerase chain reaction.Proc. Natl. Acad. Sci. USA 86, 9717–9721.PubMedCrossRefGoogle Scholar
  79. Wiesenberg I., Missbach M., Kahlen J. P., Schrader M., and Carlberg C. (1995) Transcriptional activation of the nuclear receptor RZR alpha by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand.Nucleic Acids Res. 23, 327–333.PubMedCrossRefGoogle Scholar
  80. Wisniewski T. and Frangione B. (1996) Molecular biology of brain aging and neurodegenerative disorders.Acta Neurobiol. Experiment. 56, 267–279.Google Scholar
  81. Witting W., Kwa I. H., Eikelenboom P., Mirmiran M., and Swaab D. F. (1990) Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease.Biol. Psychiat. 27, 563–572.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Weihong Song
    • 1
  • Debomoy K. Lahiri
    • 1
    • 2
  1. 1.Laboratory of Molecular Neurogenetics, Program In Medical Neurobiology, Institute of Psychiatric Research, Department of PsychiatryIndiana University School of MedicineIndianapolis
  2. 2.Medical and Molecular GeneticsIndiana University School of MedicineIndianapolis

Personalised recommendations