Skip to main content
Log in

The molecular genetics of schizophrenia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

There is overwhelming evidence for a significant genetic contribution to the etiology of schizophrenia. Molecular genetic techniques are now sufficiently advanced to be applied to complex genetic disorders with uncertain phenotypes, such as schizophrenia. In this article we first briefly discuss certain pertinent background issues: the evidence that schizophrenia has a heritable basis, the possible modes of inheritance involved, and how best to define schizophrenia in the light of this evidence; we then review the current status of research in the field. Large collaborative studies are currently underway that pave the way for the detection of genes of both major and minor effects. We may now be seeing the first consistently replicated results from chromosome 6 and 22 and from candidate genes, such as the dopamine D3 receptor gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • American Psychiatric Association (1994)Diagnostic and Statistical Manual of Mental Disorders, 4th ed. American Psychiatric AssociationWashington, DC.

    Google Scholar 

  • Antonarakis S. E., Blouin J.-L., Pulver A. E., Wolynlec P., Lasseter V. K., Nestadt G., et al. (1995) Schizophrenia susceptibility and chromosome 6p24-22.Nature Genet. 11, 235,236.

    Article  Google Scholar 

  • Arranz M., Collier D., Sodhi M., Ball D., Roberts G., Price J., et al. (1995) Association between clozapine response and allelic variation in 5-HT2a receptor genes.Lancet 346, 281,282.

    Article  Google Scholar 

  • Asherson P., Parfitt E., Sargeant M., Tidmarsh S., Buckland P., Taylor C., et al. (1992) No evidence for a pseudoautosomal locus for schizophrenia. Linkage analysis of multiply affected families.Br. J. Psychiatr. 161, 63–68.

    CAS  Google Scholar 

  • Baily-Wilson J. E. and Bamba V. (1993) Sib-pair linkage analysis of Alzheimer’s disease.Genet. Epidemiol. 10, 371–376.

    Article  Google Scholar 

  • Bassett A. S., McGillivray B. C., Jones B. D., and Pantzar J. T. (1988) Partial trisomy chromosome 5 cosegregating with schizophrenia.Lancet i, 799–801.

    Article  Google Scholar 

  • Buckland P. R., O’Donovan M. C., and McGuffin P. (1993) Clozapine and sulpiride upregulate dopamine D3 receptor mRNA levels.Neuropharmacology 32(9), 901–907.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain S., Shaw J., Rowland A., Wallis J., South S., Nakamura Y., et al. (1988) Mapping of mutation causing Friedrich’s ataxia to human chromosome 9.Nature 334, 248–250.

    Article  PubMed  CAS  Google Scholar 

  • Cloninger C. R. (1994) Turning point in the design of linkage studies of schizophrenia.Am. J. Med. Genet. 54(2), 83–92.

    Article  PubMed  CAS  Google Scholar 

  • Collinge J., DeLisi L. E., Boceio E., Johnstone E. C., Lane A., Larkin C., et al. (1991) Evidence for a pseudoautosomal locus for schizophrenia using the methods of affected sibling pairs.Br. J. Psychiatr. 158, 624–629.

    Article  CAS  Google Scholar 

  • Crocq M.-A., Mant R., Asherson P., Williams J., Hode Y., Mayerouda A., et al. (1992) Association between schizophrenia and homozygosity at the dopamine D3 receptor gene.J. Med. Genet. 29, 858–860.

    PubMed  CAS  Google Scholar 

  • Crow T. J. (1988) Sex chromosomes and psychosis.Br. J. Psychiatr. 153, 675–683.

    CAS  Google Scholar 

  • Davies J. L., Kawaguchi Y., Bennett S. T., Copeman J. B., Cordell H. J., Pritchard C. E., et al. (1994) A genome-wide search for human type 1 diabetes susceptibility genes.Nature 371, 130–136.

    Article  PubMed  CAS  Google Scholar 

  • Falconer D. S. (1965) The inheritance of liability to certain diseases, estimated from the incidence among relatives.Ann. Hum. Genet. 29, 51–76.

    Article  Google Scholar 

  • Farmer A. E., McGuffin P., and Gottesman I. I. (1984) Searching for the split in schizophrenia: a twin study perspective.Psychiatr. Res. 13, 109–118.

    Article  CAS  Google Scholar 

  • Farmer A. E., McGuffin P., and Gottesman I. I. (1987) Twin concordance for DSM-III schizophrenia: scrutinising the validity of the definition.Arch. Gen. Psychiatr. 44, 634–641.

    PubMed  CAS  Google Scholar 

  • Gaddum J. H. (1954) Drugs antagonistic to 5-hydroxy-tryptamine, inCiba Foundation Symposium on Hypertension (Wolstenholme, G. W., ed.), Little Brown and Co., Boston, MA pp. 75–77.

    Google Scholar 

  • Gill M., McGuffin P., Parfitt E., Mant R., Asherson P., Collier D., et al. (1993) A linkage study of schizophrenia with DNA markers from the long arm of chromosome 11.Psych. Med. 23, 27–44.

    CAS  Google Scholar 

  • Goldin L. R., DeLisi L. E., and Gershon E. S. (1987) The relationship of HLA to schizophrenia in 10 nuclear families.Psychiatr. Res. 20, 69–78.

    Article  CAS  Google Scholar 

  • Gottesman I. I. (1991)Schizophrenia Genesis. W. H. Freeman, New York.

    Google Scholar 

  • Gottesman I. I. and Bertelsen A. (1989) Confirming unexpressed genotypes for schizophrenia: risks in the offspring of Fischer’s Danish identical and fraternal discordant twins.Arch. Gen. Psychiatr. 46, 867–872.

    PubMed  CAS  Google Scholar 

  • Gottesman I. I. and Shields J. (1967) A polygenic theory of schizophrenia.Proc. Natl. Acad. Sci. USA 58, 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman I. I. and Shields J. (1972)Schizophrenia and Genetics: A Twin Study Vantage Point. Academic, New York.

    Google Scholar 

  • Gottesman I. I. and Shields J. (1982)Schizophrenia: The Epigenetic Puzzle. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Gurling H., Kalsi G., Chen A. H. S., Green M., Butler R., Read T., et al. (1995) Schizophrenia susceptibility and chromosome 6p24-22.Nature Genet. 11, 234,235.

    Article  Google Scholar 

  • Gusella J. F., Wexler N. S., Conneally P. M., Naylor S. L., Anderson M. A., Tanzi R. E., et al. (1983) A polymorphic marker limited to Huntington’s disease.Nature 306, 234–238.

    Article  PubMed  CAS  Google Scholar 

  • Heston L. L. (1966) Psychiatric disorders in foster home reared children of schizophrenic mothers.Br. J. Psychiatr. 112, 819–825.

    Article  CAS  Google Scholar 

  • James J. W. (1971) Frequency in relatives for an all-or-none-trait.Ann. Hum. Genet. 35, 47–49.

    Article  PubMed  CAS  Google Scholar 

  • Karayiorgou M., Morris M., Morrow B., Shprintzen R. J., Goldberg R., Borrow J., et al. (1995) Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11.Proc. Natl. Acad. Sci. USA 92, 7612–7616.

    Article  PubMed  CAS  Google Scholar 

  • Kendler K. S., Gruenberg A. M., and Kinney D. K. (1994) Independent diagnoses of adoptees and relatives as defined by DSM-III in the provincial and national samples of the Danish adoption study of schizophrenia.Arch. Gen. Psychiatr. 51, 456–468.

    PubMed  CAS  Google Scholar 

  • Kendler K. S., McGuire M., Gruenberg A. M., O’Hare A., Spellman M., Walsh D., et al. (1993a) The Roscommon family study. I. Methods, diagnosis of probands, and risk of schizophrenia in relatives.Arch. Gen. Psychiatr. 50, 527–540.

    PubMed  CAS  Google Scholar 

  • Kendler K. S., McGuire M., Gruenberg A. M., O’Hare A., Spellman M., Walsh D., et al. (1993b) The Roscommon family study. III. Schizophreniarelated personality disorders in relatives.Arch. Gen. Psychiatr. 50, 781–788.

    PubMed  CAS  Google Scholar 

  • Kendler K. S., Neale M. C., and Walsh D. (1995) Evaluating the spectrum concept of schizophrenia in the Roscommon family study.Am. J. Psychiatr. 152, 749–754.

    PubMed  CAS  Google Scholar 

  • Kety S. S., Wender P., Jacobsen B., Ingraham L. J., Jansson L., Faber B., et al. (1994) Mental illness in the biological and adoptive relatives of schizophrenic adoptees: replication of the Copenhagen study in the rest of Denmark.Arch. Gen. Psychiatr. 51, 442–455.

    PubMed  CAS  Google Scholar 

  • Kringlen E. and Cramer G. (1989) Offspring of monozygotic twins discordant for schizophrenia.Arch. Gen. Psychiatr. 46, 873–877.

    PubMed  CAS  Google Scholar 

  • Lander E. and Kruglyak L. (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results.Nature Genet. 11(3), 241–247.

    Article  PubMed  CAS  Google Scholar 

  • Lannfelt L., Sokoloff P., Martres M., Pilon C., Giros B., Jonsson E., et al. (1992) Amino-acid substitution in the dopamine D3 receptor as a useful polymorphism for investigating psychiatric disorders.Psychiatr. Genet. 2, 249–256.

    Article  Google Scholar 

  • Leboyer M. and McGuffin P. (1991) Collaborative strategies in the molecular genetics of the major psychoses.Br. J. Psychiatr. 158, 605–610.

    CAS  Google Scholar 

  • Li C. C. (1976)First Course in Population Genetics. Boxwood, Pacific Grove, CA, pp. 255–310.

    Google Scholar 

  • McGue M., Gottesman I. I., and Rao D. C. (1985) Resolving genetic models for the transmission of schizophrenia.Genet. Epidemiol. 2, 99–110.

    Article  PubMed  CAS  Google Scholar 

  • McGuffin P., Asherson P., Owen M., and Farmer A. (1994) The strength of the genetic effect—is there room for an environmental influence in the aetiology of schizophrenia?Br. J. Psychiatr. 164, 593–599.

    CAS  Google Scholar 

  • McGuffin P., Fesenstein H., and Murray R. M. (1983) A family study of HLA antigens and other genetic markers in schizophrenia.Psych. Med. 13, 31–43.

    Article  CAS  Google Scholar 

  • McGuffin P., Sargeant M., Hetti G., Tidmarsh S., Whatley S., and Marchbanks R. M. (1990) Exclusion of a schizophrenic susceptibility gene from the chromosome 5q11–q13 region. New data and a reanalysis of previous reports.Am. J. Hum. Genet. 47, 524–535.

    PubMed  CAS  Google Scholar 

  • McGuffin P. and Sturt E. (1986) Genetic markers in schizophrenia.Hum. Hered. 16, 461–465.

    CAS  Google Scholar 

  • Moises H. W., Gelertner J., Giuffra L., Zarcone V., Wetterberg L., Civelli O., et al. (1991) No linkage between D2 dopamine receptor gene region and schizophrenia.Arch. Gen. Psych. 48, 643–647.

    CAS  Google Scholar 

  • Moises H. W., Yang L., Kristbjarnarson H., Wiese C., Byerley W., Macciardi F., et al. (1995) An international two-stage genome-wide search for schizophrenia susceptibility genes.Nature Genet. 11, 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Morton N. E. and MacLean C. J. (1974) Analysis of family resemblance. III. Complex segregation of quantitative traits.Am. J. Hum. Genet. 26, 489–503.

    PubMed  CAS  Google Scholar 

  • Morton N. E. (1955) Sequential tests for the detection of linkage.Am. J. Hum. Genet. 7, 277–318.

    PubMed  CAS  Google Scholar 

  • Mowry B. J., Nancarrow D. J., Lennon D. P., Sandkuijl C. A., Crowe R. R., Silverman J. M., et al. (1995) Schizophrenia susceptibility and chromosome 6p24-22.Nature Genet. 11, 233,234.

    Article  Google Scholar 

  • O’Donovan M. C., Buckland P. R., and McGuffin P. (1991) Simultaneous quantification of several mRNA species by solution hybridisation with oligonucleotides.Nucleic Acids Res. 19, 3466.

    Article  PubMed  CAS  Google Scholar 

  • O’Donovan M. C., Guy C., Craddock N., Murphy K. C., Cardno A. G., Jones L. A., et al. (1995) Expanded CAG repeats in schizophrenia and bipolar disorder.Nature Genet. 10, 380,381.

    Article  Google Scholar 

  • Onstad S., Skre I., Torgersen S., and Kringlen E. (1991) Twin concordance for DSM-III-R schizophrenia.Acta Psychiatr. Scand. 83, 395–401.

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke D. H., Gottesman I. I., Suarez B. K., Rice J., and Reich T. (1982) Refutation of the single locus model for the etiology of schizophrenia.Am. J. Hum. Genet. 34, 630–649.

    PubMed  CAS  Google Scholar 

  • Pulver A. E., Karayiorgou M., Wolyniec P. S., Lasseter U. K., Kasch L., Westadt G., et al. (1994) A sequential strategy to identify a susceptibility gene for schizophrenia. 1. Report of potential linkage on chromosome 22q12–q13. 1.Am. J. Med. Genet. 54, 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Reich T., James J. W., and Morris C. A. (1972) The use of multiple thresholds in determining the mode of transmission of semi-continuous traits.Ann. Hum. Genet. 36, 163–184.

    Article  PubMed  CAS  Google Scholar 

  • Risch N. (1990) Linkage strategies for genetically complex traits. III. The effect of marker polymorphism analysis on affected relative pairs.Am. J. Hum. Genet. 46, 242–253.

    PubMed  CAS  Google Scholar 

  • Risch N. and Baron M. (1984) Segregation analysis of schizophrenia and related disorders.Am. J. Hum. Genet. 36, 1039–1059.

    PubMed  CAS  Google Scholar 

  • Schizophrenia Collaborative Linkage Group (1996) A combined analysis of D22S278 marker alleles in affected sib-pairs, support for a susceptibility locus for schizophrenia at 22q12.Am. J. Med. Genet. (Neuropsychiatr. Genet.) 67, 40–45.

    Article  Google Scholar 

  • Schwab S. G., Albus M., Hallmayer J., Honig S., Borrman M., Lichtermann D., et al. (1995) Evaluation of a susceptibility locus for schizophrenia on chromosome 6p by multipoint affected sibpair linkage analysis.Nature Genet. 11, 325–327.

    Article  PubMed  CAS  Google Scholar 

  • Shaikh S., Gill M., Owen M., Asherson P., McGuffin P., Nanko S., et al. (1994) Failure to find linkage between a functional polymorphism in the dopamine D4 receptor gene and schizophrenia.Am. J. Med. Genet. (Neuropsych. Genet.) 54, 8–11.

    Article  CAS  Google Scholar 

  • Sherrington R., Brynjolfsson J., Petursson H., Potter M., Duddleston K., Barrodough B., et al. (1988) Localization of a susceptibility locus for schizophrenia on chromosome 5.Nature 336, 164–167.

    Article  PubMed  CAS  Google Scholar 

  • Shprintzen R. J., Goldberg R. B., and Golding-Kushner K. J. (1992) Late-onset psychosis in the Velo-Cardio-Facial syndrome.Am. J. Med. Genet. 42, 141,142.

    Article  Google Scholar 

  • Slater E. and Cowie V. (1971)The Genetics of Mental Disorders. Oxford University Press, London, UK.

    Google Scholar 

  • Spitzer R. L., Endicott J., and Robins E. (1978)Research Diagnostic Criteria for a Selected Group of Functional Disorders, 3rd ed. New York State Psychiatric Institute, New York.

    Google Scholar 

  • Snell R. G., McMillan J. C., Cheadle J. P., Fenton I., Lazarou L. P., Davies P., et al. (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease.Nature Genet. 4, 394–397.

    Article  Google Scholar 

  • St. Clair D., Blackwood D., Muir W., Carothers A., Walker M., Spowart G., et al. (1990) Association within a family of balanced autosomal translocation with major mental illness.Lancet 336, 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Straub R. E., MacLean C. J., O’Neill A. F., Burke J., Murphy B., Duke F., et al. (1995) A potential vulnerability locus for schizophrenia on chromosome 6p24-22, evidence for genetic heterogeneity.Nature Genet. 11, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Turner W. J. (1979) Genetic markers for schizophrenia.Biol. Pshychiatr. 14, 177–205.

    CAS  Google Scholar 

  • Vogler G. P., Gottesman I. I., McGue M. K., and Rao D. C. (1991) Mixed model segregation analysis of schizophrenia in the Lindelius Swedish pedigrees.Behav. Genet. 20, 461–472.

    Article  Google Scholar 

  • Wang Z. W., Black D., Andreasen N., and Crowe R. R. (1993) Pseudoautosomal locus for schizophrenia is excluded in 12 pedigrees.Arch. Gen. Psych. 50, 199–204.

    CAS  Google Scholar 

  • Wang S., Sun C., Walczak C. A., Ziegle J. S., Kipps B. R., Goldin L. R., et al. (1995) Evidence for a susceptibility locus for schizophrenia on chromosome 6pter-p22.Nature Genet. 10, 41–46.

    Article  PubMed  Google Scholar 

  • Wildenaur D. B., Schwab S., Wurl D., Ert L. M., Ackenheil M., Schmidt S., et al. (1991) Linkage analysis in schizophrenia, exclusion of 5q11-q13, 5q34-qter, 11q22,23, Xpter and chromosome 19 in 15 systematically ascertained European families.Am. J. Hum. Genet. 49(Suppl.), 363.

    Google Scholar 

  • Williams J., Mant R., Holmans P., McGuffin P., Owen M. J., Spurlock G., et al. (1996a) A family based association study of the dopamine D3 receptor gene and highly familial schizophrenia.Am. J. Med. Genet. (Neuropsychiatr. Genet.), submitted.

  • Williams J., Spurlock G., McGuffin P., Mallet J., Nothen M., Gill M., et al. (1996b) Association between schizophrenia and the 5-HT2a receptor gene in a large European sample.Lancet,34, 1294–1296.

    Google Scholar 

  • Wing J. K., Babor T., Brugha T., Burke J., Cooper J. E., Giel R., et al. (1990) SCAN: schedules for clinical assessment in neuropsychiatry.Arch. Gen. Psychiatr. 47, 589–593.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, K.C., Cardno, A.G. & McGuffin, P. The molecular genetics of schizophrenia. J Mol Neurosci 7, 147–157 (1996). https://doi.org/10.1007/BF02736794

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736794

Index Entries

Navigation