Journal of Molecular Neuroscience

, Volume 7, Issue 2, pp 125–133 | Cite as

Regulation of stress-induced transcriptional changes in the hypothalamic neurosecretory neurons

  • Krisztina J. Kovács
  • Paul E. Sawchenko


Transcriptional changes in corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) gene expression were studied byin situ hybridization histochemistry using cRNA probes directed against intronic sequences. Acute ether stress resulted in a rapid induction of CRF and a delayed activation of vasopressin heteronuclear (hn)RNA in the parvocellular neurosecretory neurons within the paraventricular nucleus (PVN) of the hypothalamus. To explore possible molecular mechanisms regulating stress-related neuropeptide expression in vivo, the time-courses of stress-induced activation of different transcription factor classes were compared to that of changes in neuropeptide transcription. The peak of CRF transcription was parallel to that of cAMP response-element binding protein (CREB) phosphorylation but preceded the induction of c-fos and NGFI-B mRNAs and Fos protein. In contrast, AVP expression occurred in step with immediate-early gene (IEG) responses, suggesting involvement of different mechanisms underlying stress-induced neuropeptide responses. The interference of glucocorticoid hormones with stress-induced neuropeptide and transcription-factor responses has also been revealed in rats acutely or chronically pretreated with glucocorticoids. Acute dexamethasone injection did not prevent neuropeptide and transcription factor responses to ether inhalation, whereas chronic corticosterone administration completely blocked IEG and neuropeptide induction in the stress-related neurosecretory neurons.

Index Entries

Stress corticotropin-releasing factor vasopressin CREB transcription factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoni F. A. (1986) Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor.Endocrine Rev. 7, 351–378.CrossRefGoogle Scholar
  2. Ceccatelli S., Villar M. J., Goldstein M., and Hökfelt T. (1989) Expression of c-fos immunoreactivity in transmitter-characterized neurons after stress.Proc. Natl. Acad. Sci. USA 86, 9569–9573.PubMedCrossRefGoogle Scholar
  3. Chan R. K. W., Brown E. R., Ericsson A., Kovács K. J., and Sawchenko P. E. (1993) A comparison of two immediate-early genes, c-fos and NGFI-B, as markers for functional activation in stress-related neuroendocrine circuitry.J. Neurosci. 13, 5126–5138.PubMedGoogle Scholar
  4. Dallman M. F., Akana S. F., Cascio C. S., Darlington D. N., Jacobson L., and Levin N. (1987) Regulation of ACTH secretion: variations on a theme of B.Recent Progr. Hormone Res. 43, 113–173.PubMedGoogle Scholar
  5. Drouin J., Trifiro M. A., Plante R. K., Nemer M., Eriksson P., and Wrange Ö. (1989) Glucocorticoid receptor binding to a specific DNA sequence required for hormone-dependent inhibition of pro-opiomelanocortin gene transcription.Mol. Cell Biol. 9, 5305.PubMedGoogle Scholar
  6. Gonzalez G. A. and Montminy M. R. (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133.Cell 59, 675–680.PubMedCrossRefGoogle Scholar
  7. Hagiwara M., Brindle P., Harootunian A., Armstrong R., Rivier J., Vale W., Tsien R., and Montminy M. R. (1993) Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A.Mol. Cell Biol. 13, 4852–4859.PubMedGoogle Scholar
  8. Hill C. S. and Treisman R. (1995) Transcriptional regulation by extracellular signals: mechanisms and specificity.Cell 80, 199–211.PubMedCrossRefGoogle Scholar
  9. Herman J. P., Schafer M. K.-H., Watson S. J., and Sherman T. G. (1991) In situ hybridization analysis of arginine vasopressin gene transcription using intron-specific probes.Mol. Endocrinol. 5, 1447–1456.PubMedGoogle Scholar
  10. Herman J. P., Schafer M., Thompson R. C., and Watson S. J. (1992) Rapid regulation of corticotropin-releasing gene transcription in vivo.Mol. Endocrinol. 6, 1061–1069.PubMedCrossRefGoogle Scholar
  11. Kiss J. Z., Mezcy E., and Skirboll L. (1984) Corticotropin-releasing factor—immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy.Proc. Natl. Acad. Sci. USA 81, 1854–1858.PubMedCrossRefGoogle Scholar
  12. Kovács K. J. and Mezey É. (1987) Dexamethasone inhibits corticotropin-releasing factor gene expression in the paraventricular nucleus.Neuroendocrinology 46, 365–368.PubMedGoogle Scholar
  13. Kovács K. J. and Makara G. B. (1990) Partial deafferentation of the hypothalamic paraventricular nucleus: effect on the stress- or adrenalectomy-induced ACTH secretion.Neuroendocrinol. Lett. 12, 383–389.Google Scholar
  14. Kovács K. J. and Sawchenko P. E. (1996) Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons.J. Neurosci. 16, 262–273.PubMedGoogle Scholar
  15. Lightman S. L. and Young W. S. III (1988) Corticotropin-releasing factor, vasopressin and proopiomelanocortin mRNA responses to stress and opiates in the rat.J. Physiol. 403, 511–523.PubMedGoogle Scholar
  16. Sassone-Corsi P., Visvader J., Ferland L., Mellon P. L., and Verma I. M. (1988) Induction of proto-oncogene fos transcription through the adenylate-cyclase pathway: characterization of c-AMP-responsive element.Genes Dev. 2, 1529–1538.PubMedCrossRefGoogle Scholar
  17. Sawchenko P. E. and Swanson L. W. (1983) The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat.J. Comp. Neurol. 218, 121–144.PubMedCrossRefGoogle Scholar
  18. Sawchenko P. E., Swanson L. W., and Vale W. W. (1984) Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat.Proc. Natl. Acad. Sci. USA 81, 1883–1887.PubMedCrossRefGoogle Scholar
  19. Sawchenko P. E., Imaki T., Potter E., Kovács K. J., and Vale W. (1993) The functional neuroanatomy of corticotropin-releasing factor, inCorticotropin-Releasing Factor, Ciba Foundation Symposium 172 (Chadwick D. J., Marsh J., and Ackrill K., eds.), Wiley, Chichester, pp. 5–29.CrossRefGoogle Scholar
  20. Schule R., Rangarajan P., Kliewer S., Ransone L. J., Bolado J., Yang N., Verma I. M., and Evans R. M. (1990) Functional antagonism between oncoprotein c-jun and the glucocorticoid receptor.Cell 62, 1217–1226.PubMedCrossRefGoogle Scholar
  21. Seasholtz A. F., Thompson R. C., and Douglass J. O. (1988) Identification of a cyclic adenosine monophosphate-responsive element in the rat corticotropin-releasing hormone gene.Mol. Endocrinol. 2, 1311–1319.PubMedGoogle Scholar
  22. Sheng M. and Greenberg M. E. (1990) The regulation and function of c-fos and other immediate early genes in the nervous system.Neuron 4, 477–485.PubMedCrossRefGoogle Scholar
  23. Swanson L. W. and Simmonds D. M. (1989) Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat.J. Comp. Neurol. 285, 413–435.PubMedCrossRefGoogle Scholar
  24. Uht R. M., McKelvy J. F., Harrison R. W., and Bohn M. C. (1988) Demonstration of glucocorticoid receptor-like immunoreactivity in glucocorticoid-sensitive vasopressin and corticotropin-releasing factor neurons in the hypothalamic paraventricular nucleus.J. Neurosci. Res. 19, 405–411.PubMedCrossRefGoogle Scholar
  25. Vale W., Speiss J., Rivier C., and Rivier J. (1983) Characterization of a 41-residue ovine hypothalamic peptide that stimulates the secretions of corticotropin and β-endorphin.Science 213, 1394–1397.CrossRefGoogle Scholar
  26. Verbeeck M. A. E., Adan R. A. H., and Burbach J. P. H. (1990) Vasopressin gene expression is stimulated by cyclic AMP in homologous and heterologous expression systems.FEBS Lett. 272, 89–93.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Krisztina J. Kovács
    • 1
    • 2
  • Paul E. Sawchenko
    • 1
    • 2
  1. 1.Laboratory of Molecular NeuroendocrinologyInstitute of Experimental MedicineBudapestHungary
  2. 2.Laboratory of Neuronal Structure and FunctionThe Salk InstituteLa Jolla

Personalised recommendations