Journal of Molecular Neuroscience

, Volume 6, Issue 4, pp 277–287 | Cite as

Reserpine- and tetrabenazine-sensitive transport of3H-histamine by the neuronal isoform of the vesicular monoamine transporter

  • Jeffrey D. Erickson
  • Lee E. Eiden
  • Martin K. -H. Schäfer
  • Eberhard Weihe


The transport of3H-histamine by the endocrine-specific (VMAT1) and neuronal (VMAT2) isoforms of the vesicular monoamine transporter has been evaluated in digitonin-permeabilized fibroblasts transfected with either VMAT1 or VMAT2. Transport of3H-histamine by both VMAT1 and VMAT2 was reserpine-sensitive but only transport by VMAT2 was inhibited by tetrabenazine. Maximal equilibrated levels of3H-histamine accumulation by VMAT2 (K m∼300 µM) were approximately three times greater than that mediated by VMAT1 when using a subsaturating concentration of exogenous3H-histamine (50 µM). The expression of VMAT2 in histaminergic neurons in the rat brain was examined with polyclonal antipeptide antibodies specific for VMAT1 or VMAT2. VMAT2-positive and tyrosine hydroxylase-negative immunoreactive cell bodies were localized to the ventral part of the posterior hypothalamus in the region of the mamillary nuclei. The transport properties of VMAT2 and the distribution of VMAT2 in cell bodies in the tuberomammillary nucleus of the posterior hypothalamus reported here and the apparent absence of VMAT1 and VMAT2 in tissue mast cells support previous findings of reserpine-sensitive and reserpine-resistant pools of histamine in brain and peripheral tissues.

Index Entries

Vesicular monoamine transporter isoforms VMAT1 VMAT2 histamine reserpine tetrabenazine posterior hypothalamus tuberomammillary nucleus mast cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atack C. (1971) Reduction of histamine in mouse brain by N1-(D. L-seryl)-N2-(2,3,4-trihydroxybenzyl) hydrazine and reserpine.J. Pharm. Pharmacol. 23, 992,993.PubMedGoogle Scholar
  2. Atack C. and Carlsson A. (1972) In vitro release of endogenous histamine, together with noradrenaline and 5-hydroxytryptamine, from slices of mouse cerebral hemispheres.J. Pharm. Pharmacol. 24, 990–992.PubMedGoogle Scholar
  3. Buu N. T. (1989) Modification of vesicular dopamine and norepinephrine by monoamine oxidase inhibitors.Biochem. Pharmacol. 38, 1685–1692.PubMedCrossRefGoogle Scholar
  4. Dismukes H. and Snyder S. H. (1974) Histamine turnover in rat brain.Brain Res. 78, 467–481.PubMedCrossRefGoogle Scholar
  5. Erickson J. D., Eiden L. E., and Hoffman B. (1992) Expression cloning of a reserpine-sensitive vesicular monoamine transporter.Proc. Natl. Acad. Sci. USA 89, 10,993–10,997.CrossRefGoogle Scholar
  6. Erickson J. D. and Eiden L. E. (1993) Functional identification and molecular cloning of a human brain vesicle monoamine transporter.J. Neurochem. 61, 2314–2317.PubMedCrossRefGoogle Scholar
  7. Erickson J. D., Schafer M. K.-H., Bonner T. I., Eiden L. E., and Weihe E. (1996) Distributions in neuronal and endocrine cells and distinct pharmacological properties of two isoforms of the human vesicular monoamine transporter.Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  8. Fuerst T. R., Niles E. G., Studier F. W., and Moss B. (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase.Proc. Natl. Acad. Sci. USA 83, 8122–8126.PubMedCrossRefGoogle Scholar
  9. Garbarg M., Barbin G., Bischoff S., Pollard H., and Schwartz J. C. (1976) Dual localization of histamine in an ascending neuronal pathway and in non-neuronal cells evidenced by lesions in the lateral hypothalamic area.Brain Res. 106, 333–348.PubMedCrossRefGoogle Scholar
  10. Garbarg M., Barbin G., Rodergas E., and Schwartz J. C. (1980) Inhibition of histamine synthesis in brain by α-fluoromethylhistidine, a new irreversible inhibitor: in vitro and in vivo studies.J. Neurochem. 35, 1045–1052.PubMedCrossRefGoogle Scholar
  11. Gonzalez A. M., Walther D., Pazos A., and Uhl G. A. (1994) Synaptic vesicular monamine transporter expression: distribution and pharmacologic profile.Mol. Brain Res. 22, 219–226.PubMedCrossRefGoogle Scholar
  12. Green H. and Erickson R. W. (1964) Effect of some drugs upon rat brain histamine content.Int. J. Neuropharmacol. 3, 315–320.PubMedCrossRefGoogle Scholar
  13. Hakanson R., Bottcher G., Ekblad E., Panula P., Simonsson M., Dohlsten M., Hallberg T., and Sundler F. (1986) Histamine in endocrine cells in the stomach: a survey of several species using a panel of histamine antibodies.Histochemistry 86, 5–17.PubMedCrossRefGoogle Scholar
  14. Hough L. and Domino E. (1979) Tele-methylhistamine oxidation by type B monoamine oxidase.J. Pharmacol. Exp. Ther. 208, 422–428.PubMedGoogle Scholar
  15. Kanner B. I. and Bendahan A. (1985) Transport of 5-hydroxytryptamine in membrane vesicles from rat basophilic leukemia cells.Biochim. Biophys. Acta 816, 403–410.PubMedCrossRefGoogle Scholar
  16. Liu Y., Peter D., Roghani A., Schuldiner S., Prive G. G., Eisenberg D., Brecha N., and Edwards R. H. (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter.Cell 70, 539–551.PubMedCrossRefGoogle Scholar
  17. Maeyama K., Watanabe T., Yamatodani A., and Wada H. (1983) Effect of α-fluoromethylhistidine on the histamine content of the brain of W/W mice devoid of mast cells: turnover of brain histamine.J. Neurochem. 41, 128–134.PubMedCrossRefGoogle Scholar
  18. Martres M. P., Baudry M., and Schwartz J. C. (1975) Histamine synthesis in the developing rat brain: evidence for multiple compartmentation.Brain Res. 83, 261–275.PubMedCrossRefGoogle Scholar
  19. Menckel A. and Edwards, R. H. (1995) Transport of histamine by vesicular monoamine transporter-2.Neuropharmacology 34, 1543–1547.CrossRefGoogle Scholar
  20. Metcalfe D. D., Costa J. J., and Burd P. R. (1992) Mast cells and basophils, inInflammation: Basic Principles and Clinical Correlates, 2nd ed. (Gallin J. I., Goldstein I. M., and Snyderman R., eds.), Raven, New York, pp. 709–725.Google Scholar
  21. Moran N. C. and Westerholm B. (1963) The influence of reserpine on hydroxytryptamine and histamine content of rat mast cells and of some rat tissues.Acta Physiol. Scand. 58, 20–29.CrossRefGoogle Scholar
  22. Muroi N., Oishi R., and Saeki K. (1991) Effect of reserpine on histamine metabolism in the mouse brain.J. Pharmacol. Exp. Ther. 256, 967–972.PubMedGoogle Scholar
  23. Oishi R., Nishibori M., and Saeke K. (1984) Regional differences in the turnover of neuronal histamine in the rat brain.Life Sci. 34, 691–699.PubMedCrossRefGoogle Scholar
  24. Parratt J. R. and West G. B. (1957) Release of 5-hydroxytryptamine and histamine from tissues of the rat.J. Physiol. (Lond.) 137, 179–192.Google Scholar
  25. Peter D., Jimenez J., Liu Y., Kim J., and Edwards R. H. (1994) The chromaffin granule and synaptic vesicle amine transporters differ in substrate recognition and sensitivity to inhibitors.J. Biol. Chem. 269, 7231–7237.PubMedGoogle Scholar
  26. Peter D., Liu Y., Sternini C., de Giorgio R., Brecha N., and Edwards R. H. (1995) Differential expression of two vesicular monoamine transporters.J. Neurosci. 15, 6179–6188.PubMedGoogle Scholar
  27. Pollard H., Bischoff S., and Schwartz J. C. (1973) Increased synthesis and release of3H-histamine in rat brain by reserpine.J. Pharm. Pharmacol. 25, 920–922.PubMedGoogle Scholar
  28. Romeo H. E., Fink T., Yanaihara N., and Weihe E. (1994) Distribution and relative proportions of neuropeptide Y- and proenkephalin-containing noradrenergic neurones in rat superior cervical ganglion: separate projections to submaxilliary lymph nodes.Peptides 15, 1479–1487.PubMedCrossRefGoogle Scholar
  29. Russell W. L., Henry D. P., Phebus L. A., and Clemens J. A. (1990) Release of histamine in rat hypothalamus and corpus striatum in vivo.Brain Res. 512, 95–101.PubMedCrossRefGoogle Scholar
  30. Schafer M. K.-H., Nohr D., Romeo H., Eiden L. E., and Weihe E. (1994) Pan-neuronal expression of chromogranin A in rat nervous system.Peptides 15, 263–279.PubMedCrossRefGoogle Scholar
  31. Schayer R. W. and Reilly M. A. (1973) Formation and fate of histamine in rat and mouse brain.J. Pharmacol. Exp. Ther. 184, 33–40.PubMedGoogle Scholar
  32. Schwartz J. C., Pollard H., Bischoff S., Rehault M. C., and Verdiere M. (1971) Catabolism of3H-histamine in the rat brain after intracisternal administration.Eur. J. Pharmacol. 16, 326–335.PubMedCrossRefGoogle Scholar
  33. Schwartz J. C., Lampart C., and Rose C. (1972) Histamine formation in rat brain in vivo: effects of histidine loads.J. Neurochem. 19, 801–810.PubMedCrossRefGoogle Scholar
  34. Schwartz J.-C., Arrang J.-M., Garbarg M., Pollard H., and Ruat M. (1991) Histaminergic transmission in the mammalian brain.Physiol. Rev. 71, 1–51.PubMedGoogle Scholar
  35. Schuldiner S., Shirvan A., and Linial M. (1995) Vesicular neurotransmitter transporters: from bacteria to humans.Physiol. Rev. 75, 369–392.PubMedGoogle Scholar
  36. Stitzel R. E. (1977) The biological fate of reserpine.Pharmacol. Rev. 28, 179–205.Google Scholar
  37. Steinbusch H. W. M. (1991) Distribution of histaminergic neurons and fibers in rat brain.Acta Otalaryngol. 479, 12–23.Google Scholar
  38. Sugimoto K., Maeyama K., Alam M. K., Sakurai E., Onoue H., Kasugai T., Kitamura Y., and Watanabe T. (1995) Brain histaminergic system in mast cell-deficient (Ws/Ws) rats: histamine content, histidine decarboxylase activity, and effects of (S) α-fluromethylhistidine.J. Neurochem. 65, 791–797.PubMedCrossRefGoogle Scholar
  39. Taylor K. M. and Snyder S. H. (1971) Histamine in rat brain: sensitive assay of endogenous levels, formation in vivo and lowering by inhibitors of histidine decarboxylase.J. Pharmacol. Exp. Ther. 179, 619–633.PubMedGoogle Scholar
  40. Taylor K. M. and Snyder S. H. (1972) Dynamics of the regulation of histamine levels in mouse brain.J. Neurochem. 19, 341–354.PubMedCrossRefGoogle Scholar
  41. Taylor K. M. and Snyder S. H. (1973) The release of histamine from tissue slices of rat hypothalamus.J. Neurochem. 21, 1215–1223.PubMedCrossRefGoogle Scholar
  42. Verdiere M., Rose C., and Schwartz J. C. (1975) Synthesis and release of histamine studied on slices from rat hypothalamus.Eur. J. Pharmacol. 34, 157–168.PubMedCrossRefGoogle Scholar
  43. Wada H., Inagaki N., Yamatodani A., and Watanabe T. (1991) Is the histaminergic neuron system a regulatory center for whole-brain activity?Trends Neurosci. 14, 415–418.PubMedCrossRefGoogle Scholar
  44. Weihe E., Schafer M. K.-H., Erickson J. D., and Eiden L. E. (1994) Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat.J. Mol. Neurosci. 5, 149–164.PubMedGoogle Scholar
  45. Weiner N. (1970) Regulation of norepinephrine biosynthesis.Ann. Rev. Pharmacol. 10, 273–290.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Jeffrey D. Erickson
    • 1
  • Lee E. Eiden
    • 1
  • Martin K. -H. Schäfer
    • 2
  • Eberhard Weihe
    • 2
  1. 1.Section on Molecular Neuroscience, Laboratory of Cell BiologyNational Institute of Mental Health, National Institutes of HealthBethesda
  2. 2.Department of Anatomy and Cell BiologyPhilipps UniversityMarburgGermany

Personalised recommendations