Journal of Molecular Neuroscience

, Volume 6, Issue 3, pp 169–183 | Cite as

A transcriptional enhancer of the glutamine synthetase gene that is selective for retinal Müller glial cells

  • Yi-Chen Li
  • David Beard
  • Scott Hayes
  • Anthony P. Young


This article demonstrates that the chicken glutamine synthetase (GS) promoter contains cis-acting elements that direct transcription to retinal Müller glial cells. The transient assay system developed to identify these elements involved electroporation of intact retinal tissue with GS-β-galactosidase fusion genes followed by preparation of primary cultures and histochemical assay of cells expressing β-galactosidase. Plasmids containing β-galactosidase under transcriptional control by two different viral promoters are expressed primarily in neuronal cells after transfection of intact embryonic d 12 retina. In sharp contrast, expression is primarily in Müller glia after transfection with a GS-β-galactosidase fusion gene. Although GS is glucocorticoid inducible, steroid hormone is not required to achieve Müller cell-selective expression of the GS-β-galactosidase fusion gene. Deletion studies indicate that multiple cis-acting elements located between nucleotides −436 and −61 relative to the GS transcription start site contribute to produce Müller cell selectivity. Moreover, these upstream elements enhance expression of a heterologous promoter in Müller cells but not neurons. These results indicate that an enhancer located between 61 and 436 nucleotides upstream of the transcription start site contributes to Müller cell-selective expression of the GS gene in the retina.

Index Entries

Glutamine synthetase Müller cell glia glial-selective enhancer electroporation transient gene expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler R., Magistretti P. J., Hyndman A. G., and Shoemaker W. J. (1982) Purification and cytochemical identification of neuronal and non-neuronal cells in chick embryo retina cultures.Dev. Neurosci. 5, 27–39.PubMedGoogle Scholar
  2. Barry C. P., Xie J., Lemmon V., and Young A. P. (1993) Molecular characterization of a multi-promoter gene encoding a chicken filamin protein.J. Biol. Chem. 268, 25,577–25,586.Google Scholar
  3. DeWet J. R., Wood K. W., DeLuca M., Helinski D. R., and Subramani S. (1987) Firefly luciferase gene: structure and expression in mammalian cells.Mol. Cell Biol. 7, 725–737.Google Scholar
  4. Giguere V., Hollenberg S. M., Rosenfeld M. G., and Evans R. M. (1986) Functional domains of the human glucocorticoid receptor.Cell 46, 645–652.PubMedCrossRefGoogle Scholar
  5. Grossman R., Fox L. E., Gorovits R., Ben-Dror I., Reisfeld S., and Vardimon L. (1994) Molecular basis for differential expression of glutamine synthetase in retina glia and neurons.Mol. Brain Res. 21, 312–320.PubMedCrossRefGoogle Scholar
  6. Hall C. V., Jacob P. E., Ringold G. M., and Lee F. (1983) Expression and regulation of Escherichia coli lac Z gene fusions in mammalian cells.J. Mol. Appl. Genet. 2, 101–109.PubMedGoogle Scholar
  7. Harlow E. and Lane D. (1988)Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  8. Lemmon V. (1986) Localization of a filamin-like protein in glia of the chicken central nervous system.J. Neurosci. 6, 43–51.PubMedGoogle Scholar
  9. Li H.-P. and Sheffield J. B. (1984) Isolation and characterization of flat cells, a subpopulation of the embryonic chick retina.Tissue Cell 16, 843–857.PubMedCrossRefGoogle Scholar
  10. Linser P. and Moscona A. A. (1979) Induction of glutamine synthetase in embryonic neural retina: enzyme localization in Müller fibers and dependence of cell interactions.Proc. Natl. Acad. Sci. USA 76, 6476–6480.PubMedCrossRefGoogle Scholar
  11. Linser P. and Moscona A. A. (1981) Carbonic anhydrase C in the neural retina: transition from generalized to glia-specific localization during embryonic development.Proc. Natl. Acad. Sci. USA 78, 7190–7194.PubMedCrossRefGoogle Scholar
  12. MacGregor G. R., Mogg A. E., Burke J. F., and Caskey C. T. (1987) Histochemical staining of clonal mammalian cell lines expressingE. coli β-galactosidase indicates heterogeneous expression of the bacterial gene.Somat. Cell. Mol. Genet. 13, 253–265.PubMedCrossRefGoogle Scholar
  13. Mill J., Mearow K., Purohit H., King R. G., Smith H., and Freese E. (1991) Cloning and functional characterization of the rat glutamine synthetase gene.Mol. Brain Res. 9, 197–207.PubMedCrossRefGoogle Scholar
  14. Moscona A. A. (1972) Induction of glutamine synthetase in embryonic neural retina: a model for the regulation of specific gene expression in embryonic cells.FEBS Symp. 24, 1–23.Google Scholar
  15. Moscona A. A. and Hubby J. L. (1963) Experimentally induced changes in glutamotransferase activity in embryonic tissue.Dev. Biol. 7, 192–206.PubMedCrossRefGoogle Scholar
  16. Moscona A. A. and Linser P. (1983) Developmental and experimental changes in retinal glial cells: cell interactions and control of phenotype expression and stability.Curr. Top. Devel. Biol. 18, 155–188.CrossRefGoogle Scholar
  17. Moscona M. and Moscona A. A. (1979) The development of inducibility for glutamine synthetase in embryonic neural retina; inhibition by BrdU.Differentiation 13, 165–172.PubMedCrossRefGoogle Scholar
  18. Nordeen S. K. (1988) Luciferase reporter gene vectors for analysis of promoters and enhancers.BioTechniques 6, 454–457.PubMedGoogle Scholar
  19. Patejunas G. and Young A. P. (1987) Tissue-specific regulation of avian glutamine synthetase expression during development and in response to glucocorticoid hormones.Mol. Cell. Biol. 7, 1070–1077.PubMedGoogle Scholar
  20. Patejunas G. and Young A. P. (1990) Constitutive and glucocorticoid-mediated activation of glutamine synthetase gene expression in the developing chicken retina.J. Biol. Chem. 265, 15,280–15,285.Google Scholar
  21. Pu H. and Young A. P. (1989) The structure of the chicken glutamine synthetase-encoding gene.Gene 81, 169–175.PubMedCrossRefGoogle Scholar
  22. Pu H. and Young A. P. (1990) Glucocorticoid-inducible expression of a glutamine synthetase-CAT encoding fusion plasmid after transfection of intact chicken retinal explant cultures.Gene 89, 259–263.PubMedCrossRefGoogle Scholar
  23. Reif-Lehrer L. (1968) Development of glutamine synthetase activity in chick embryo retina cultures in the absence of added hydrocortisone.Biochem. Biophys. Res. Comm. 33, 984–989.PubMedCrossRefGoogle Scholar
  24. Reisfeld S. and Vardimon L. (1994) Cell to cell contacts control the transcription activity of the glucocorticoid receptor.Mol. Endocrinol. 8, 1224–1233.PubMedCrossRefGoogle Scholar
  25. Vardimon L., Fox L. E., and Moscona A. A. (1986) Developmental regulation of glutamine synthetase and carbonic anhydrase II in neural retina.Proc. Natl. Acad. Sci. USA 83, 9060–9064.PubMedCrossRefGoogle Scholar
  26. Venta P. J., Montgomery J. C., Hewett-Emmett D., and Tashian R. E. (1985) Comparison of the 5′ regions of the human and mouse carbonic anhydrase II genes and identification of possible regulatory elements.Biochim. Biophys. Acta 826, 195–201.PubMedGoogle Scholar
  27. Yoshihara C. M., Lee J. D., and Dodgson J. B. (1987) The chicken carbonic anhydrase II gene: evidence for a recent shift in intron position.Nucleic Acids Res. 15, 753–770.PubMedCrossRefGoogle Scholar
  28. Zhang H., Li Y. C., and Young A. P. (1993) Protein kinase A activation of glucocorticoid signalling in embryonic retina.Proc. Natl. Acad. Sci. USA 90, 3880–3884.PubMedCrossRefGoogle Scholar
  29. Zhang H. and Young A. P. (1991) A single upstream glucocorticoid response element juxtaposed to an AP1/ATF/CRE-like site renders the chicken glutamine synthetase gene hormonally inducible in transfected retina.J. Biol. Chem. 266, 24,332–24,338.Google Scholar
  30. Zhang H. and Young A. P. (1993) Exogenous, but not endogenous, glucocorticoid receptor induces glutamine synthetase gene expression in early stage embryonic retina.J. Biol. Chem. 268, 2850–2856.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Yi-Chen Li
    • 2
    • 3
  • David Beard
    • 1
    • 2
  • Scott Hayes
    • 2
    • 3
  • Anthony P. Young
    • 1
    • 2
    • 3
  1. 1.Division of Pharmacology, College of PharmacyThe Ohio State UniversityColumbus
  2. 2.Neurobiotechnology CenterThe Ohio State UniversityColumbus
  3. 3.Molecular, Cellular, and Developmental Biology ProgramThe Ohio State UniversityColumbus

Personalised recommendations