Journal of Molecular Neuroscience

, Volume 6, Issue 1, pp 51–62 | Cite as

Ontogenic expression of two α-1 adrenergic receptor subtypes in the rat brain

  • Susan K. McCune
  • Joanna M. Hill


α-1A/D and α-1B adrenergic receptor subtype mRNA expression was studied during pre-and postnatal rat brain development. Oligonucleotide probes were generated to distinguish these two homologous subtypes byin situ histochemical analysis in E14, E16, E19, P0, P8, P14, P21, and adult animals. α-1B adrenergic receptor mRNA expression was noted as early as the E14 animal and demonstrated specific regional and temporal expression. α-1A/D adrenergic receptor mRNA expression was limited in the E19 and P0 animal but increased in intensity with aging. Specific regional and temporal expression differed between the two subtypes. The regional localization for both subtypes appeared to be stable after P21 but the intensity of expression for both subtypes decreased between P21 and adulthood, which is a finding that correlates with previous ligand-binding data. Different subtypes of homologous receptors have very different ontogenic patterns of distribution and may account for previous discrepancies in ligand-binding data and differential tissue responses to various ligands during development.

Index Entries

In situ hybridization CNS development G-protein coupled receptors catecholamine receptors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlquist R. P. (1948) A study of adrenotropic receptors.Am. J. Physiol. 153, 586–600.PubMedGoogle Scholar
  2. Bartolome J. V., Kavlock R. J., Cowdery T., Orband-Miller L., and Slotkin T. A. (1987) Development of adrenergic receptor binding sites in brain regions of the neonatal rat: effects of prenatal or postnatal exposure to methylmercury.Neurotoxicology 8, 1–14.PubMedGoogle Scholar
  3. Berger B. and Verney C. (1984) Development of the catecholamine innervation in rat neocortex: morphological features, inNeurology and Neurobiology, vol. 10: Monoamine Innervation of Cerebral Cortex (Descarries L., Reader T. R., and Jasper H. H., eds.), Liss, New York, pp. 95–121.Google Scholar
  4. Berthelsen S. and Pettinger W. A. (1977) A functional basis for classification of alpha-adrenergic receptors.Life Sci. 21, 596–606.CrossRefGoogle Scholar
  5. Bylund D. B. and U’Prichard D. C. (1983) Characterization of alpha-1 and alpha-2 adrenergic receptors.Int. Rev. Neurobiol. 24, 343–422.PubMedCrossRefGoogle Scholar
  6. Cotecchia S. Schwinn D. A., Randall R. R., Lefkowtiz R. J., Caron M. G., and Kobilka B. K. (1988) Molecular cloning and expression of the cDNA for the hamster alpha-1 adrenergic receptor.Proc. Natl. Acad. Sci. USA 85, 7159–7163.PubMedCrossRefGoogle Scholar
  7. Coyle J. T. (1977) Biochemical aspects of neurotransmission in the developing brain.Int. Rev. Neurobiol. 20, 65–103.PubMedGoogle Scholar
  8. Hill J. M., Agoston D. V., Gressens P., and McCune S. K. (1994) Distribution of VIP mRNA and two distinct VIP binding sites in the developing rat brain: relation to ontogenic events.J. Comp. Neurol. 342, 186–205.PubMedCrossRefGoogle Scholar
  9. Kellogg C. and Wennerstrom G. (1974) An ontogenic study on the effect of catecholamine receptor-stimulating agents on the turnover of noradrenaline and dopamine in the brain.Brain Res. 79, 451–464.PubMedCrossRefGoogle Scholar
  10. Kobilka B. K., Matsui H., Kobilka T. S., Yang-Feng T. L., Francke U., Caron M. G., Lefkowitz R. J., and Regan J. W. (1987) Cloning, sequencing and expression of the gene coding for the human platelet alpha-2 adrenergic receptor.Science 238, 650–656.PubMedCrossRefGoogle Scholar
  11. Langer S. Z. (1974) Presynaptic regulation of catecholamine release.Biochem. Pharmacol. 23, 1793–1800.PubMedCrossRefGoogle Scholar
  12. Lanier L. P., Dunn A. J., and Van Hartesveldt C. (1976) Development of neurotransmitters and their function in brain, inReviews of Neuroscience (Ehrenpreis S. and Kopin I. J., eds.), Raven, New York.Google Scholar
  13. Lanier S. M., Downing S., Duzic E., and Homcy C. J. (1991) Isolation of rat genomic clones encoding subtypes of the alpha-2 adrenergic receptor. Identification of a unique receptor subtype.J. Biol. Chem. 266, 10,470–10,478.Google Scholar
  14. Lawrence I. E. Jr. and Burden H. W. (1973) Catecholamines and morphogenesis of the chick neural tube and notochord.Am. J. Anat. 137, 199–208.PubMedCrossRefGoogle Scholar
  15. Lidow M. S. and Racik P. (1994) Unique profiles of the alpha 1-, alpha 2-, and beta-adrenergic receptors in the developing cortical plate and transient embryonic zones of the rhesus monkey.J. Neurosci. 14, 4064–4078.PubMedGoogle Scholar
  16. Lomasney J. W., Lorenz W., Allen L. F., King K., Regan J. W., Yang-Feng T. L., Caron M. G., and Lefkowitz R. J. (1990) Expansion of the alpha-2 adrenergic receptor family: cloning and characterization of a human alpha-2 adrenergic receptor subtype, the gene for which is located on chromosome 2.Proc. Natl. Acad. Sci. USA 87, 5094–5098.PubMedCrossRefGoogle Scholar
  17. Lomasney J. W., Cotecchia S., Lorenz W., Leung W.-Y., Schwinn D. A., Yang-Feng T. L., Brownstein M., Lefkowitz R. J., and Caron M. G. (1991) Molecular cloning and expression of the cDNA for the alpha-1A adrenergic receptor.J. Biol. Chem. 266, 6365–6369.PubMedGoogle Scholar
  18. Maniatis T., Fritsch E. F., and Sambrook J. (1982)Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  19. Marshall K. C., Christie M. J., Finlayson P. G., and Williams J. T. (1991) Developmental aspects of the locus-coeruleus-noradrenaline system.Prog. Brain Res. 88, 173–185.PubMedCrossRefGoogle Scholar
  20. McCune S. K., Voigt M. M., and Hill J. M. (1993) Expression of multiple alpha adrenergic receptor subtype messenger RNAs in the adult rat brain.Neuroscience 57, 143–151.PubMedCrossRefGoogle Scholar
  21. Minneman K. P. and Esbenshade T. A. (1994) α1-adrenergic receptor subtypes.Ann. Rev. Pharmacol. Toxicol. 34, 117–133.Google Scholar
  22. Morris M. J., Dausse J.-P., Devynck M.-A., and Meyer P. (1980) Ontogeny of α1 and α2-adrenoceptors in rat brain.Brain Res. 190, 268–271.PubMedCrossRefGoogle Scholar
  23. Nicholas A. P., Pieribone V. A., Elde R., and Hokfelt T. (1991) Initial observations on the localization of mRNA for α and β adrenergic receptors in brain and peripheral tissues of rat usingin situ hybridization.Mol. Cell. Neurosci. 2, 344–350.CrossRefGoogle Scholar
  24. Olson L. and Seiger A. (1972) Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations.Z. Anat. Entwickl.-Gesch. 137, 301–316.CrossRefGoogle Scholar
  25. Paxinos G., Tork I., Tecott L. H., and Valentino K. L. (1991)Atlas of the Developing Rat Brain. Academic, New York.Google Scholar
  26. Paxinos G. and Watson C. (1986)The Rat Brain in Stereotaxic Coordinates. Academic, New York.Google Scholar
  27. Pieribone V. A., Nicholas A. P., Dagerlind A., and Hokfelt T. (1994) Distribution of α1 adrenoceptors in rat brain revealed byin situ hybridization experiments utilizing subtype-specific probes.J. Neurosci. 14, 4252–4268.PubMedGoogle Scholar
  28. Price D. T., Lefkowitz R. J., Caron M. G., Berkowitz D., and Schwinn D. A. (1994) Localization of mRNA for three distinct α1-adrenergic receptor subtypes in human tissues: implications for human α-adrenergic physiology.Mol. Pharmacol. 45, 171–175.PubMedGoogle Scholar
  29. Regan J. W., Kobilka T. S., Yang-Feng T. L., Caron M. G., Lefkowitz R. J., and Kobilka B. K. (1988) Cloning and expression of a human kidney cDNA for an alpha-2 adrenergic receptor subtype.Proc. Natl. Acad. Sci. USA 85, 6301–6305.PubMedCrossRefGoogle Scholar
  30. Schwinn D. A., Lomasney J. W., Lorenz W., Szklut P. J., Fremeau R. T., Yang-Feng T. L., Caron M. G., Lefkowitz R. J., and Cotecchia S. (1990) Molecular cloning and expression of the cDNA for a novel alpha-1 adrenergic receptor subtype.J. Biol. Chem. 265, 8183–8189.PubMedGoogle Scholar
  31. Vernadakis A. (1973) Comparative studies of neurotransmitter substances in the maturing and aging central nervous system of the chicken.Prog. Brain Res. 40, 231–243.PubMedGoogle Scholar
  32. Voigt M. M., Kispert J., and Chin H. (1990) Sequence of a rat brain cDNA encoding an alpha-1B adrenergic receptor.Nucleic Acids Res. 18, 1053.PubMedCrossRefGoogle Scholar
  33. Voigt M. M., McCune S. K., Kanterman R. Y., and Felder C. C. (1991) The rat alpha-2C4 adrenergic receptor gene encodes a novel pharmacological subtype.FEBS Lett. 278, 45–50.PubMedCrossRefGoogle Scholar
  34. Weinberg D. H., Trivedi P., Tan C. P., Mitra S., Perkins-Barrow A., Borkowski D., Strader C. D., and Bayne M. (1994) Cloning, expression and characterization of human α adrenergic receptors α1A, α1B, and α1C.Biochem. Biophys. Res. Commun. 201, 1296–1304.PubMedCrossRefGoogle Scholar
  35. Young W. S. III, Mezey E., and Siegel R. E. (1986) Vasopressin and oxytocin mRNAs in adrenalectomized and Brattleboro rats; analysis byin situ hybridization histochemistry.Mol. Brain Res. 1, 231–241.CrossRefGoogle Scholar
  36. Zeng D., Harrison J. K., D’Angelo D. D., Barber C. M., Tucker A. L., Lu Z., and Lynch K. R. (1990) Molecular characterization of a rat alpha-2B adrenergic receptor.Proc. Natl. Acad. Sci. USA 87, 3102–3106.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Susan K. McCune
    • 1
  • Joanna M. Hill
    • 2
  1. 1.Division of Neonatology, Department of PediatricsJohns Hopkins University HospitalBaltimore
  2. 2.Section on Developmental and Molecular Pharmacology, Laboratory of Developmental NeurobiologyNational Institute of Child Health and Human Development, National Institutes of HealthBethesda

Personalised recommendations