Monte Carlo techniques in computational stochastic mechanics

  • J. E. Hurtado
  • A. H. Barbat


A state of the art on simulation methods in stochastic structural analysis is presented. The purpose of the paper is to review some of the different methods available for analysing the effects of randomness of models and data in structural analysis. While most of these techniques can be grouped under the general name ofMonte Carlo methods, the several published algorithms are more suitable to some objectives of analysis than to others in each case. These objectives have been classified into the foolowing cathegories: (1), TheStatistical Description of the structural scattering, a primary analysis in which the uncertain parameters are treated as random variables; (2) The consideration of the spatial variability of the random parameters, that must then be modelled as Random Fields (Stochastic Finite Elements); (3) The advanced Monte Carlo methods for calculating the usually very low failure probabilities (Reliability Analysis), and, (4), a deterministic technique that depart from the random nature of the above methods, but which can be linked with them in some cases, known as theResponse Surface Method. All of these techniques are critically examined and discussed. The concluding remarks point out some research needs in the field from the authors' point of view.


Failure Probability Importance Sampling Monte Carlo Technique Limit State Function Structural Reliability 


  1. Adomian, G. (1983):Stochastic Systems, Academic Press, New York.MATHGoogle Scholar
  2. Ang, A. H. S., and Tang, W. H. (1984):Probability Concepts in Engineering Planning and Design, Vol II, John Wiley and Sons, New York.Google Scholar
  3. Ang, G. L., Ang, A. H. S. and Tang, W. H. (1991): Optimal Importance Sampling Density Estimator,Journal of Engineering Mechanics, ASCE, 118(6), 1146–1163.CrossRefGoogle Scholar
  4. Araujo, J. M. and Awruch, A. M. (1994): On Stochastic Finite Elements for Structural Analysis,Computers and Structures, 52(3), 461–469.MATHCrossRefGoogle Scholar
  5. Arnbjerg-Nielsen, T., and Bjerager, P. (1988): Finite Element Reliability Method with Improved Efficiency by Sensitivity Analysis,Computational Probabilistic Methods, ASME, AMD-Vol. 93, edited by Liu, Belytschko, Lawrence and Cruce, 15–25.Google Scholar
  6. Augusti, G., Baratta, A., and Casciatti, F. (1984):Probabilistic Methods in Structural Engineering, Chapman and Hall, London.MATHGoogle Scholar
  7. Aumeier, S. E., Lee, J. C., Akeasu, A. Z. (1996): Probabilistic Techniques using Monte Carlo Sampling for Multi—component System Diagnostics,Proceedings of the International Conference on Mathematics and Computations, Reactor Physics and Environmental Analyses, 103–112. La Grange Park.Google Scholar
  8. Ayyub, B. M., and Haldar, A. (1984): Practical Structural Reliability Techniques,Journal of Engineering Mechanics, ASCE, 110(8), 1707–1724.Google Scholar
  9. Ayyub, B. M., and Chia, C. Y. (1992): Generalized Conditional Expectation for Structural Reliability Assessment,Structural Safety, 11, 131–146.CrossRefGoogle Scholar
  10. Bazant, Z. P. and Liu, K. L. (1985): Random Creep and Shrinkage in Structures: Sampling,Journal of Structural Engineering, ASCE, 111(5), 1113–1134.Google Scholar
  11. Bharucha-Reid, A. T. (1959): On Random Operator Equations in Banach Space,Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr. Phys., Vol. 7, 561–564.MATHMathSciNetGoogle Scholar
  12. Bjerager, P., and Krenk, S. (1987): Sensitivity Measures in Structural Reliability Analysis,Proc. of 1st IFIP Working Conference on Reliability and Optimization on Structural Systems, edited by P. Thoft-Christensen, Springer Verlag, 459–470.Google Scholar
  13. Bjerager, P. (1988): Probability Integration by Directional Simulation,Journal of Engineering Mechanics, ASCE, 114(8), 1285–1302.Google Scholar
  14. Bjerager, P. (1991): Methods for Structural Reliability Computations, inReliability Problems: General Principles and Applications in Mechanics of Solids and Structures, edited by Casciatti, F. and Roberts, J. B., Springer-Verlag, New York.Google Scholar
  15. Box, G. E. P., and Draper, N. R. (1987):Empirical Model-Building and Response Surfaces, John Wiley and Sons, New York.MATHGoogle Scholar
  16. Bratley, P., Fox, B. L., Schrage, L. E. (1987):A Guide to Simulation, Springer Verlag, New York.Google Scholar
  17. Breitung, K. (1984): Asymptotic Approximation for Multinormal Integrals,Journal of Engineering Mechanics, ASCE, 110(3), 357–366.CrossRefGoogle Scholar
  18. Brenner, Ch. E., and Bucher, Ch. (1995): A contribution to the SFE-based Reliability Assessment of Nonlinear Structures Under Dynamic Loading,Probabilistic Engineering Mechanics, 10, 265–273.CrossRefGoogle Scholar
  19. Bucher, C. G. (1988): Adaptive Sampling: An Iterative Fast Monte-Carlo Procedure,Structural Safety, 5(2), 119–126.CrossRefGoogle Scholar
  20. Bucher, C. G., Pradlwarter, H. J. and Schuëller, G. I. (1991): Computational Stochastic Structural Analysis (COSSAN)Structural Dynamics: Recent Advances (G. I. Schuëller, editor), Springer Verlag, Berlin.Google Scholar
  21. Bucher, C. G., Brenner, C. E. (1992): Stochastic Response of Uncertain Systems,Archive of applied Mechanics, 62(8), 507–516.MATHGoogle Scholar
  22. Casciatti, F. and Faravelli, L. (1990)Fragility Analysis of Complex Structural Systems Research Studies Press Ltd., Taunton, England.Google Scholar
  23. Casciatti, F. (1991): Safety Index, Stochastic Finite Elements and Expert Systems inReliability Problems: General Principles and Applications in Mechanics of Solids and Structures, edited by Casciatti, F., and Roberts, J. B., Springer-Verlag, New York.Google Scholar
  24. Chang, T. P., Chang, H. C. (1994): Stochastic Dynamic Finite Element Analysis of a Non Uniform Beam,International Journal of Solids and Structures, 3195), 587–597.CrossRefGoogle Scholar
  25. Chinchalkar, S., Taylor, D. L. (1991): Parallel Stochastic Finite Element Analysis on Distributed Memory Multiprocessors, inHigh Performance Computing II, 345–356. North Holland, Amsterdam.Google Scholar
  26. Cruse, T. A., Wu, Y. T., Dias, S., and Rajagopal, K. R. (1988): Probabilistic Structural Analysis Methods and Applications,Computers and Structures, 30(1/2), 163–170.MathSciNetCrossRefGoogle Scholar
  27. Der Kiureghian, A. (1985): Finite Element Based Reliability Analysis of Frame Structures,Structural Safety and Reliability, edited by Konishi, Ang and Shinozuka, ICOSSAR, Kobe, Japan, Vol. I, 395–404.Google Scholar
  28. Der Kiureghian, A., and Liu, P. L. (1986): Structural Reliability under Incomplete Probability Information,Journal of Engineering Mechanics, ASCE, 112(1), 85–104.Google Scholar
  29. Der Kiureghian, A., and Lin, H. Z., and Hwang, S. J. (1987): Second Order Reliability Approximations.Journal of Engineering Mechanics, ASCE, 113(8), 1208–1225.Google Scholar
  30. Der Kiureghian, A., and Ke, J. B. (1987): The Stochastic Finite Element Method in Structural Reliability.Probabilistic Engineering Mechanics, 3(2), 83–91.CrossRefGoogle Scholar
  31. Der Kiureghian, A. (1988): Measures of Structural Safety under Imperfect States of Knowledge,Journal of structural Engineering, ASCE.Google Scholar
  32. Der Kiureghian, A. and Ke, J. B. (1988): The Stochastic Finite Element Method in Structural Reliability,Probabilistic Engineering Mechanics, 3(2), 83–91.CrossRefGoogle Scholar
  33. Der Kiureghian, A., and De Stefano, M. (1990): An Efficient Algorithm for Second-Order Reliability Analysis, Report No. UCB 90/20, Department of Civil Engineering, University of California at Berkeley, Berkeley, California.Google Scholar
  34. Ditlevsen, O., and Bjerager, P. (1986): Methods of Structural Systems Reliability,Structural Safety, 3, 195–229.CrossRefGoogle Scholar
  35. Ditlevsen, O., Bjerager, P., Olesen, R., and Hasofer, A. M. (1988): Directional Simulation in Gaussian Processes,Probabilistic Engineering Mechanics, 3(4), 207–217.CrossRefGoogle Scholar
  36. Dolinski, K. (1983): First-Order Second Moment Approximation in Reliability of Structural Systems: Critical Review and Alternative Approach.Structural Safety, 1, 211–231.CrossRefGoogle Scholar
  37. Enevoldsen, I., Faber, M. H., and Sorensen, J. D. (1994): Adaptive Response Surface Techniques in Reliability Estimation,Structural Safety and Reliability, ed by Schuëller, Shinozuka and Yao, Balkema, Rotterdam, 1257–1264.Google Scholar
  38. Enevoldsen, I., Faber, M. H., and Sorensen, J. D. (1994): Adaptive Response surface Techniques in Reliability Estimation.Structural Safety and Reliability. II, 1257–1265. Balkema, Rotterdam.Google Scholar
  39. Faber, M., and Rackwitz, R. (1988): Excursion Probabilities of Non-Homogeneous Gaussian Scalar Fields based on Maxima Considerations,Proc. of 2nd IFIP Working Conference on Reliability and Optimization on Structural Systems, edited by P. Thoft-Christensen, Springer Verlag.Google Scholar
  40. Faravelli, L. (1988): Stochastic Finite Elements by Response Surface Techniques in Computational Probabilistic Methods,ASME-AMD, VOL.93 197–203.Google Scholar
  41. Faravelli, L. (1989): Response Surface Approach for Reliability Analysis,Journal of Engineering Mechanics, ASCE, 115(12), 2763–2781.Google Scholar
  42. Faravelli, L. (and Bigi, D. (1990): Stochastic Finite Elements for Crash Problems,Structural Safety, 8, 113–130.CrossRefGoogle Scholar
  43. Faravelli, L. (1993): Dynamic Analysis of Complex Structural Systems, inDynamic Motion Chaotic and Stochastic Behaviour, edited by Casciatti, Springer Verlag, New York.Google Scholar
  44. Faravelli, L. (1993): Dynamic Analysis of Complex Structural Systems, in:Dynamic Motion. Chaotic and Stochastic Behavior (F. Casciatti, editor), 301–324, Springer Verlag, Wien.Google Scholar
  45. Fenton, G. A. (1994): Error Evaluation of Three Random-Field Generators,Journal of Engineering Mechanics, ASCE, 120 (12), 2478–2497.CrossRefGoogle Scholar
  46. Fenton, G. A., and Vanmarcke, E. H. (1990): Simulation of Random Fields, via Local Average Subdivision,Journal of Engineering Mechanics, ASCE, 116(8), 1733–1949.CrossRefGoogle Scholar
  47. Fiessler, B., Neumann, H.J., and Rackwitz, R. (1979): Quadratic Limit States in Structural Reliability,Journal of Engineering Mechanics Division, ASCE, 105, 661–676.Google Scholar
  48. Florian, A. (1992): An Efficient Sampling Scheme: Updated Latin Hypercube Sampling,Probabilistic Engineering Mechanics, 7, 123–130.CrossRefGoogle Scholar
  49. Fujita, M., and Rackwitz, R. (1988): Updating First and Second Order Reliability Estimates by Importance Sampling,Structural Engineering and Earthquake Engineering, JSCE, 5(1), 31s-37sGoogle Scholar
  50. Fujita, M., Schall, G. and Rackwitz, R. (1987): Time Variant Component Reliabilities by FORM and SORM and Updating by Importance Sampling,Proc. of ICASP 5, Vancouver, Vol. 2, 520–527.Google Scholar
  51. Ghanern, R. G. and Spanos, P. D. (1991),Stochastic Finite Elements: A Spectral Approach Springer Verlag, New York.Google Scholar
  52. Ghanem, R. G. and Spanos, P. D. (1997): Spectral Techniques for Stochastic Finite Elements,Archives of Computational Methods in Engineering, 4(10) 63–100.MathSciNetGoogle Scholar
  53. Gollwitzer, S., Zverev, A., Cuntze, R. and Grimmelt, M. (1994): Structural Reliability Applications in Acrospace Engineering.Structural Safety and Reliability.II 1265–1272 Balkema Rotterdam.Google Scholar
  54. Gollwitzer, S., and Rackwitz, R. (1988): An Efficient Numerical Solution to the Multinormal Integral,Probabilistic Engineering Mechanics, 3(2), 98–101.CrossRefGoogle Scholar
  55. Guoliang, J., Lin, C., Jiamei, D. (1993): Monte Carlo Finite Element Mothod of Structure Reliability Analysis,Reliability Engineering and System Safety, 40(1), 77–83.CrossRefGoogle Scholar
  56. Hall, P. (1992):The Bootstrap and the Edgeworth, Expansion Springer-Verlag, New York.Google Scholar
  57. Harbitz, A. (1983): Efficient and Accurate Probability of Failure Calculation by use of the Importance Sampling Technique.Proc. of ICASP4, Firenze, Italy, 825–836.Google Scholar
  58. Harbitz, A. (1986): An Efficient Sampling Method for, Probability of Failure Calculation,Structural Safety, 3, 109–115.CrossRefGoogle Scholar
  59. Hasofer, A. M., and Lind, N. C. (1974): Exact and Invariant Second Moment Code Format.Journal of the Engineering Mechanics Division, ASCE, 100(EM1), 111–121.Google Scholar
  60. Hasselman, T. K. and Hart, G. C. (1972): Modal Analysis of Random Structural Systems,Journal of Engineering Mechanics, ASCE, 98 (EM3), 561–579.Google Scholar
  61. Hisada, T. and Nakagiri, S. (1985): Role of the Stochastic Finite Element Method in Structural Safety and Reliability,ICOSSAR '85, International Conference on Structural Safety and Reliability, 1, 385–392.Google Scholar
  62. Hohenbichler, M., and Rackwitz, R. (1981): Non normal Dependent Vectors in Structural Reliability,Journal of Engineering Mechanics Division, ASCE, 107, 1227–1238.Google Scholar
  63. Hohenbichler, M., and Rackwitz, R. (1986a): Sensitivity and Importance Measures in Structural Reliability,Civil Engineering Systems, 3(4), 203–209.CrossRefGoogle Scholar
  64. Hohenbichler, M., and Rackwitz, R. (1986b): Asymptotic Crossing Rate of Gaussian Vector Processes into Intersections of Failure Domains,Probabilistic Engineering Mechanics, I(3), 177–179.CrossRefGoogle Scholar
  65. Hohenbichler, M., Gollwitzer, S., Kruse, W., and Rackwitz, R.: New Light on First-and Second-Order Reliability Methods,Structural Safety, 4, 267–284.Google Scholar
  66. Hohenbichler, M., and Rackwitz, R. (1988): Improvement of Second Order Reliability Estimates by Importance Sampling,Journal of Engineering Mechanics, ASCE, 114(12), 2195–2199.Google Scholar
  67. Hong, H. P. and Lind, N. C. (1996): Approximate reliability analysis using normal polynomial and simulation results,Structural Safety, 18:329–339.CrossRefGoogle Scholar
  68. Hoshiya, M. (1994): Conditional Simulation of a Stochastic Field.Structural Safety and Reliability. I, 349–354. Balkema, Rotterdam.Google Scholar
  69. Igusa, T., and Der Kiureghian, A. (1988); Response of Uncertain Systems to Stochastic Excitation,Journal of Engineering Mechanics, ASCE, 114(5).Google Scholar
  70. Iman, R. L. and Canover, W. J. (1980): Small Sample Sensitivity Analysis Techniques for Computer Models with an Application to Risk Assessment,Communications in Statistics, Theory and Methods, A9 (17), 1749–1842.CrossRefGoogle Scholar
  71. Johnson, N. L., S. Kotz and N. Balakrishnan (1994):Continuous Univariate Distributions, 2nd. edition. John Wiley, New York.MATHGoogle Scholar
  72. Kameda, H. and Morikawa, H. (1994): Conditional Stochastic Processes for Conditional Random Fields,Journal of Engineering Mechanics, ASCE, 120(4), 855–875.CrossRefGoogle Scholar
  73. Karamchandani, A. (1987): Structural System Reliability Analysis Methods, Report 83, John A. Blume Earthquake Engineering Center, Stanford University.Google Scholar
  74. Karamchandani, A., Bjerager, P., and Cornell, C. A. (1988): Methods to Estimate Parametric Sensitivity in Structural Reliability Analysis,Probabilistic Engineering Mechanics, ASCE, edited by P.D. Spanos, 86–89.Google Scholar
  75. Karamchandani, A., Bjerager, P., and Cornell, C. A. (1989): Adaptive Importance Sampling,Proceedings, 5th International Conference on Structural Safety and Reliability, San Francisco, California, August 7–11, 1989.Google Scholar
  76. Kasutki, S. and Frogonpol, D. M. (1994): Hypersphere Division Method for Structural Reliability,Journal of Engineering Mechanics, ASCE, 120(11), 2405–2442.CrossRefGoogle Scholar
  77. Kim, S. H. and Na, S. W. (1997): Response Surface Method using Vector Projected Sampling Points.Structural Safety, 19:3–19.CrossRefGoogle Scholar
  78. Kleiber, M. and Hien, T. D. (1992),The Stochastic Finite Element Method, John Wiley and Sons, New York.MATHGoogle Scholar
  79. Kolassa, J. E. (1997):Series Approximation Methods in Statistics, 2nd, edition. Springer-Verlag, New York.MATHGoogle Scholar
  80. Law, A. and Kelton, W. D. (1991):Simulation Modeing and Analysis McGraw Hill, Singapore.Google Scholar
  81. Lepage, G. P. (1980): VEGAS: An Adaptive Multidimensional Integration Program. Publication CLNS-80/447. Cornell University.Google Scholar
  82. Li, C. C. and Der Kiureghian, A. (1993): Optimal Discretization of Random Fields,Journal of Engineering Mechanics, ASCE, 119 (6), 1136–1154.CrossRefGoogle Scholar
  83. Li, Y. and Kareem, A. (1993): Simulation of Multivariate Random Processes: Hybrid DFT and Digital Filtering Approach,Journal of Engineering Mechanics, 119 (5), 1078–1098.CrossRefGoogle Scholar
  84. Lin, H. Z. and Der Kiureghian, A. (1987): Second-Order System Reliability using Directional Simulation,Reliability and Risk Analysis in civil Engineering 2, ICASP. 5. edited byN.C. Lind, University of Waterloo, Ontario Canada, 930–936.Google Scholar
  85. Liu, P. L., and Der Kiureghian, A. (1988a): Reliability of Geometrically Nonlincar Structures,Probabilistic Engineering Mechanics, ASCE, edited, by P.D. Spanos, 164–167.Google Scholar
  86. Liu, P. L., and Der Kureghian, A. (1988b): Optimization Algorithms for Structural Reliability,Computational Probabilistic Methods, ASCE,93, edited by Liu, Belytschko, Lawrence, and Cruce, 185–196.Google Scholar
  87. Liu, P. L. (1993): Selection of Random Field Mesh in Finite Element Reliability Analysis,Journal of Engineering Mechanics, ASCE, 119(4), 667–680.CrossRefGoogle Scholar
  88. Liu, W. K., Belytschko, T., and Mani, A. (1986): Random Field Finite Elements,Numerical Methods in Engineering 23, 1831–1845.MATHMathSciNetCrossRefGoogle Scholar
  89. Liu, W. K., Mani, A., and Belytschko, T. (1987): Finite Element Methods in Probabilistic Mechanics,Probabilistic Engineering Mechanics 2(4), 201–213.CrossRefGoogle Scholar
  90. Liu, W. K., Besterfield, G. H. and Belytschko, T. (1988): Variational Approach to Probabilistic finite Elements,Journal of Engineering Mechanics, ASCE, 114(12), 2115–2133.Google Scholar
  91. Lutes, L. D., Shahram, S., and Jin, S. (1996): Efficiency and Accuracy in Simulation of random Fields,Probabilistic Engineering Mechanics, 11, 73–86.CrossRefGoogle Scholar
  92. Madsen, H. O., Krenk, S. and Lind, N. C. (1986):Methods of Structural Safety, Prentice-Hall, Inc., Englewood Cliffs, N. J.Google Scholar
  93. Madsen, H. O. (1987): Model Updating in Reliability Theory,Reliability and Risk Analysis in Civil Engineering 1, ICASP 5, edited by N. C. Lind, University of Waterloo, Ontario, Canada, 564–577.Google Scholar
  94. Madsen, H. O. and Moghtaderi-Zadeh, M. (1987): Reliability of Plates under Combined Loading,Proceedings, Marine Structural Reliability Symposium, SNAME, Arlington, Virginia, 185–191.Google Scholar
  95. Madsen, H. O., and Tvedt, L. (1988): Efficient Methods in Time Dependent Reliability,Probabilistic Engineering Mechanics, ASCE, edited by P. D. Spanos, 432–435.Google Scholar
  96. Madsen, H. O. (1988): Omission Sensitivity Factors,Structural Safety, 5, 35–45.MathSciNetCrossRefGoogle Scholar
  97. Madsen, H. O. and Tvedt, L. (1990): Methods for Time-Dependent Reliability and Sensitivity Analysis, Journal of Engineering Mechanics, ASCE, 116(10), 2118–2135.CrossRefGoogle Scholar
  98. Maltz, F. H. and Hitzl, D. L. (1979): Variance Reduction in Monte-Carlo Computations Using Multi-Dimensional Hermite Polynomials,Journal of Computational Physics, 32, 345–376.MATHMathSciNetCrossRefGoogle Scholar
  99. Mantoglou, A. and Wilson, J. L. (1981): Simulation of Random Fields with the Turning Bands Method,Rep. No 264, Deptartment of Civil Engineering, MIT, Cambridge, Mass.Google Scholar
  100. Marek, P., Gustar, M. and Anagnos, T. (1996):Simulation—Based Reliability Assessment for Structural Engineers. CRC Press, Boca Raton.Google Scholar
  101. McKay, M. D., Beckman, R. J. and Conover, W. J. (1979): A Comparison of Three Methods for Selecting Values of input Variables in the Analysis of Output from a Computer Code,Technometrics, 21(n2).Google Scholar
  102. Melehers, R. E. (1987):Structural Reliability, Analysis and Prediction, Ellis Horwood Series in Civil Engineering, Halsted Press, England.Google Scholar
  103. Melchers, R. E. (1987): Structural System Reliability Assessment Using Directional Simulation,Structural Safety, 16, 23–37.CrossRefGoogle Scholar
  104. Mignolet, M. P. and Spanos, P. D. (1992): Simulation of Homogeneous Two-Dimensional Random Fields: Part I-AR and ARMA Models,Journal of Applied Mechanics, 59, S260-S269.Google Scholar
  105. Muscolino, G. (1993): Response of Linear and Non-linear Structural Systems under Gaussian or Non-Gaussian Filtered Input, in:Dynamic Motion. Chaotic and Stochastic Behavior. (edited by F. Casciatti), 203–301, Springer Verlag, Wien.Google Scholar
  106. Nakagiri, S. and Hisada, T. (1982): Stochastic Finite Element Method Applied to Structural Analysis with Uncertain Parameters,Proceedings of the International Conference on FEM, 206–211.Google Scholar
  107. Nataf, A. (1962): Determination des distributions dont les marges sont donées.Comptes rendues de l'Academie des Sciences, Paris, 225, 42–43.MathSciNetGoogle Scholar
  108. Paloheimo, E. and Hannus, M. (1974): Structural Design Based on Weighted Fractiles,Journal of the Structural Division, ASCE, 100(ST7), 1367–1378.Google Scholar
  109. Papadopoulos, V. and Papadrakakis, M., (1996): Efficient Solution Procedures for the Stochastic Analysis of Space Frames using the Monte Carlo Simulation.Developments in Computational Techniques for Structural Engineering (edited by Topping, B. H. V.), 61–70, Edinburgh.Google Scholar
  110. Papoulis, A. (1991):Probability, Random Variables and Stochastic Processes, McGraw Hill, New York.Google Scholar
  111. Plantee, J. Y. and Rackwitz, R. (1989): Structural Reliability under Non-Stationary Gaussian Vector Process Loads,Proceedings of the Eighth International Conference on Offshore Mechanics and Arctic Engineering, The Hague, The Netherlands, 1989.Google Scholar
  112. Ponslet, E., Maglaras, G., Haftka, R. T., Nikolaidis, E., and Sensharma, P. (1994): Analytical and Experimental Comparison of Probabilistic and Deterministic Optimization,American Institute of Aeronautics and Astronautics, 544–559.Google Scholar
  113. Pulido, J. E., Jacobs, T. L., and Prates de Lima, E. C. (1992): Structural Reliability using Monte Carlo Simulation with Variance Reduction Techniques on Elastic—Plastic Structures,Computers and Structures, 43(3), 419–430.CrossRefGoogle Scholar
  114. Pradlwarter, H. J. and Schuëller, G. I. and Melnik-Melnikov, P. G. (1994): Reliability of MDOF-Systems,Probabilistic Engineering Mechanics, 9, 235–243.CrossRefGoogle Scholar
  115. Pradlwarter, H. J. and Schuëller, G. I. (1995): On Advanced Monte Carlo Simulation Procedures in Stochastic Structural Dynamics,Submitted to: Journal of Nonlinear Mechanics.Google Scholar
  116. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992):Numerical Recipes in FORTRAN, Cambridge University Press, Cambridge.MATHGoogle Scholar
  117. Priestley, M. B. (1994):Spectral Analysis and Time Series, Academic Press, London.Google Scholar
  118. Rackwitz, R. (1982): Response Surfaces in Structural Reliability,Report 67, 1982, Institut fur Bauingenieurwesen III, Technical University of Munich, West Germany.Google Scholar
  119. Righetti, G. and Harrop-Williams, K. (1988): Finite Element Analysis of Random Soil Media,Journal of Geotechnical Engineering, 114(1), 59–75.CrossRefGoogle Scholar
  120. Ripley, B. D. (1987):Stochastic Simulation, John Wiley and Sons, New York.MATHGoogle Scholar
  121. Ronold, K. O. (1989): Probabilistic Consolidation Analysis with Model Updating,Journal of Geotechnical Engineering, ASCE, 115(2).Google Scholar
  122. Rubinstein, R. Y. (1981):Simulation and the Montecarlo Method, J. Wiley and Sons, New York.Google Scholar
  123. Santos, J. L. T., Siemaszko, A., Cardoso, J. M. B., and Barros, P. M. S. (1994): Interactive-Computer Aided Reliability Engineering,American Institute of Aeronautics and Astronautics, 581–589.Google Scholar
  124. Schetzen, M. (1989):The Volterra and Wiener Theories and Nonlinear Systems. Krieger Publishing Company, Malabar, Florida.Google Scholar
  125. Schuëller, G. I. and Shinozuka, M. (eds.) (1987):Stochastic Methods in Structural Dynamics. Martinus Nijhoff Publishers, Dordrecht.MATHGoogle Scholar
  126. Schuëller, G. I. and Stix, R. (1987): A Critical Appraisal of Methods to determine Failure Probabilities,Structural Safety, 4, 293–309.CrossRefGoogle Scholar
  127. Schuëller, G. I., Bucher, C. G., Bourgund, U. and Ouypornprasert, W. (1989): On Efficient Computational Schemes to Calculate Structural Failure Probabilities,Probabilistic Engineering Mechanics, 4(1), 10–18.CrossRefGoogle Scholar
  128. Schuëller, G. I., Bucher, C. G., and Pradlwarter, H. J. (1990): Computational Methods in Stochastic Structural Dynamics,Structural Dynamics, ed by Krätziget al., 599–636.Google Scholar
  129. Schuëller, G. I. and Bayer, V. (1996): Computational Procedures in Structural Reliability.Proceedings of the Second International Symposium on Uncertainty Modelling and Analysis, 152–159, IEEE Computers Society Press.Google Scholar
  130. Shao S. and Murotsu, Y. (1994): Reliability of Complex Structural Systems using an Efficient Directional Simulation.Structural Safety and Reliability. III, 1529–1534. Balkema, Rotterdam.Google Scholar
  131. Shinozuka, M. (1964): Probability of Failure under Random Loading,Journal of Engineering Mechanics, ASCE, 90(5), 147–171.Google Scholar
  132. Shinozuka, M. and Lenoe, R. (1976): A Probabilistic Model for Spatial Distribution of Material Properties,Engineering Fracture Mechanics, 8, 217–227.CrossRefGoogle Scholar
  133. Shinozuka, M. (1983): Basic Analysis of Structural Safety,Journal of Structural Engineering, ASCE, 109(3), 721–740.Google Scholar
  134. Shinozuka, M. (1987a): Structural Response Variability,Journal of Engineering Mechanics, ASCE, 113(6), 825–842.Google Scholar
  135. Shinozuka, M. (1987b): Basic Issues in Stochastic Finite Element Analysis,Reliability and Risk Analysis in Civil Engineering,1, edited by N. C. Lind, University of Waterloo, Ontario, 506–519.Google Scholar
  136. Shinozuka, M. (1987c): Stochastic Fields and Their Digital Simulation, inStochastic Methods in Structural Dynamics, edited by Schuëller, G. I. and Shinozuka, M., Martinus Nijhoff Publishers, Dordrecht.Google Scholar
  137. Spanos, P. D. and Mignolet, M. P. (1992): Simulation of Homogeneous Two-Dimensional Random Fields: Part II-MA and ARMA Models,Journal of Applied Mechanics, 59, 270–277.Google Scholar
  138. Spanos, P. D., and Zeldin, B. A. (1994): Galerkin Sampling Method for Stochastic Mechanics Problems,Journal of Engineering Mechanics, ASCE, 120(5), 1091–1106.CrossRefGoogle Scholar
  139. Stubbs, N., Kim, J. T. and Topole, K. G. (1994): Experimental Determination of System Stochasticity.Structural Safety and Reliability. I, 369–374. Balkema, Rotterdam.Google Scholar
  140. Thoft-Christensen, P. and Murotsu, Y. (1986):Application of Structural Systems Reliability Theory, Springer Verlag, West Germany.MATHGoogle Scholar
  141. Turk, G., Ramirez, M. R. and Corotis, R. B. (1994): Structural Reliability Analysis of Nonlinear systems,Structural Safety and Reliability, ed by Schuëller, Shinozuka and Yao, Balkema, Rotterdam, 1345–1352.Google Scholar
  142. Tvedt, L. (1988): Second Order Reliability by an Exact Integral,Proc. of 2nd IFIP Working Conference on Reliability and Optimization on Structural Systems, edited by P. Thoft-Christensen, Springer Verlag (in press).Google Scholar
  143. Vanmarcke, E. (1983):Random Fields: Analysis and Synthesis, M.I.T. Press, Cambridge.Google Scholar
  144. Vanmarcke, E., Shinozuka, M. Nakagiri, S. Schuëller, G. I. and Grigoriu, M. (1986): Random Fields and Stochastic Finite Elements,Structural Safety, 3, 143–166.CrossRefGoogle Scholar
  145. Vanmarcke, E. (1994): Stochastic finite elements and experimental measurements.Probabilistic Engineering Mechanics, 9, 103–114.CrossRefGoogle Scholar
  146. Van Vinckenroy, G., De Wilde, W. P. (1993): Monte Carlo Techniques applied to Finite Element Modelling of Adhesively Bonded Joints,Computational Methods and Experimental Measurements (edited by C. A. Brebbia and G. M. Carlomagno), 2, 3–12.Google Scholar
  147. Veneziano, D., Casciatti, F. and Faravelli, L. (1983): Method of Seismic Fragility for Complicated Systems,Proceedings of 2nd Commitee on the Safety of Nuclear installations (CSNI): Specialist Meeting on Probabilistic Methods in Seismic Risk Assessment for NPP, Livermore, California.Google Scholar
  148. Wang, G. S., and Ang, A. H. S. (1994): Adaptive Kernel Method for Evaluating Structural System Reliability.Structural Safety and Reliability. III, 1495–1500. Balkema, Rotterdam.Google Scholar
  149. Wen, Y. K. (1987): Approximate Methods for Nonlinear Time-Variant Reliability Analysis,Journal of Engineering Mechanics, ASCE, 113(12), 1826–1839.Google Scholar
  150. Wen, Y. K. and Chen, H. C. (1987): On Fast Integration for Time Variant Structural Reliability,Probabilistic Engineering Mechanics, 2(3), 156–162.CrossRefGoogle Scholar
  151. Wiener, N. (1958):Nonlinear Problems in Random Theory, Technology Press of the Massachussets Institute of Technology and John Wiley and Sons Inc., New York.MATHGoogle Scholar
  152. Winkler, G. (1995):Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer Verlag, Berlin.MATHGoogle Scholar
  153. Winterstein, S. R. and Cornell C. A. (1984): Load Combination and Clustering Effects,Journal of Structural Engineering, ASCE, 110, 2690–2708.Google Scholar
  154. Winterstein, S. R. and Bjerager, P. (1987): The Use of Higher Moments in Reliability Estimation,Reliability and Risk Analysis in Civil engineering 2, ICASP 5, edited by N. C. Lind, University of Waterloo, Ontario, Canada, 1027–1036.Google Scholar
  155. Winterstein, S. R. (1988): Nonlinear Vibration Models for Extremes and Fatigue,Journal of Engineering Mechanics, ASCE, 114(10), 1772–1790.Google Scholar
  156. Wirsching, P. H., Ortiz, K., and Lee, S. J. (1987): An Overview of Reliability Methods in Mechanical and Structural Desing,American Institute of Aeronautics and Astronautics, 260–266.Google Scholar
  157. Wu, Y. T. and Wirsching, P. H. (1987): A New Algorithm for Structural Reliability Estimation,Journal of Engieering Mechanics, ASCE, 113, 1319–1336.Google Scholar
  158. Wu, Y. T., Burnside, O. H. and Crusc, T. A. (1989): Probabilistic Methods for Structural Response Analysis,Computational Mechanics of Probabilistic and Reliability Analysis, edited by Liu and Belytschko, Elme Press International, Lausanne, Switzerland.Google Scholar
  159. Yamazaki, F. and Shinozuka, M. (1986):Digital Generation of Non-Gaussian Stochastic Fields, Technical Report, Department of Civil Engineering, Columbia University, New York.Google Scholar
  160. Yamazaki, F. and Shinozuka, M. (1988): Digital Generation of Non-Gaussian Stochastic Fields,Journal of Engineering Mechanics, ASCE, 114(7), 1183–1197.CrossRefGoogle Scholar
  161. Yamazaki, F., Shinozuka, M. and Dasgupta, G. (1988): Neumann Expansion for Stochastic Finite Element Analysis,Journal of Engineering Mechanics, ASCE, 114(8), 1335–1354.Google Scholar
  162. Yamazaki, F. (1990): Simulation of Stochastic Fields by Statistical Preconditioning,Journal of Engineering Mechanics, ASCE, 116(2), 268–287.MathSciNetCrossRefGoogle Scholar
  163. Yamazaki, F., and Shinozuka, M. (1990): Simulation of Stochastic Fields by Statistical Preconditioning,Journal of Engineering Mechanics, ASCE, 116(2), 268–287.CrossRefGoogle Scholar
  164. Yonezawa, M. and Okuda, S. (1994): An Improved Importance Sampling Density Estimation for Structural Reliability Assessment, inStructural Safety and Reliability, ICOSSAR '93, 3, 1501–1508. edited by Schuëller, G. I., Shinozuka, M. and Yao, J. T. P., A. A. Balkema, Rotterdam.Google Scholar
  165. Zhang, J. and Ellingwood, B. (1994): Orthogonal Series Expansions of Random Fields in Reliability Analysis,Journal of Engineering Mechanics, ASCE, 120(12), 2660–2678.CrossRefGoogle Scholar
  166. Zhu, W. Q. and Wu, W. Q. (1990): A Stochastic Finite Element Method for Real Eigenvalue Problems, inStochastic Structural Dynamics 2, edited by Elishakoff, I. and Lin, Y. K., Springer Verlag, New York.Google Scholar
  167. Ziha, K. (1995): Descriptive Sampling in Structural Safety,Structural Safety, 17, 33–41.CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona (Spain) 1998

Authors and Affiliations

  • J. E. Hurtado
    • 1
  • A. H. Barbat
    • 2
  1. 1.Facultad de Ingenicría y ArquitecturaUniversidad Nacional de ColombiaManizales
  2. 2.Departmento de Resistencia de Materiales y Estructuras en la IngenieríaUniversidad Politécnica de CataluñaBarcelonaEspaña

Personalised recommendations