Advertisement

Journal of Molecular Neuroscience

, Volume 5, Issue 1, pp 1–26 | Cite as

Distribution of the vesicular acetylcholine transporter (VAChT) in the central and peripheral nervous systems of the rat

  • Martin K. -H. Schäfer
  • Eberhard Weihe
  • Hélène Varoqui
  • Lee E. Eiden
  • Jeffrey D. Erickson
Article

Abstract

Expression of the acetylcholine biosynthetic enzyme choline acetyltransferase (ChAT), the vesicular acetylcholine transporter (VAChT), and the high-affinity plasma membrane choline transporter uniquely defines the cholinergic phenotype in the mammalian central (CNS) and peripheral (PNS) nervous systems. The distribution of cells expressing the messenger RNA encoding the recently cloned VAChT in the rat CNS and PNS is described here. The pattern of expression of VAChT mRNA is consistent with anatomical, pharmacological, and histochemical information on the distribution of functional cholinergic neurons in the brain and peripheral tissues of the rat. VAChT mRNA-containing cells are present in brain areas, including neocortex and hypothalamus, in which the existence of cholinergic neurons has been the subject of debate. The demonstration that VAChT is a completely adequate marker for cholinergic neurons should allow the systematic delineation of cholinergic synapses in the rat nervous system when antibodies directed to this protein are available.

Index Entries

Cholinergic vesicular acetylcholine transporter VAChT mRNA brain parasympathetic spinal cord cerebral cortex basal forebrain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfonso A., Grundahl K., Duerr J. S., Han H.-P., and Rand J. B. (1993) TheCaenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter.Science 261, 617–619.PubMedCrossRefGoogle Scholar
  2. Alfonso A., Grundahl K., McManus J. R., Asbury J. M., and Rand J. B. (1994) Alternative splicing leads to two cholinergic proteins inC. elegans.J. Mol. Biol. 241, 627–630.PubMedCrossRefGoogle Scholar
  3. Angerer L. M., Stoler M. H., and Angerer R. C. (1987)In situ hybridization with RNA probes: an annotated recipe, inIn Situ Hybridization: Applications to Neurobiology (Valentino L., Eberwine I., and Barchas D., eds.), Oxford University Press, New York, pp. 42.Google Scholar
  4. Armstrong D. M., Saper C. B., Levey A. I., Wainer B. H., and Terry R. D. (1983) Distribution of cholinergic neurons in rat brain demonstrated by the immunocytochemical localization of choline acetyltransferase.J. Comp. Neurol. 216, 53–68.PubMedCrossRefGoogle Scholar
  5. Barber R. P., Phelps P. E., Houser C. R., Crawford G. D., Salvaterra P. M., and Vaughn J. E. (1984) The morphology and distribution of neurons containing choline acetyltransferase in the adult rat spinal cord: an immunocytochemical study.J. Comp. Neurol. 229, 329–346.PubMedCrossRefGoogle Scholar
  6. Bejanin S., Habert E., Berrard S., Edwards J.-B. D. M., Loeffler J.-P., and Mallet J. (1992) Promoter elements of the rat choline acetyltransferase gene allowing nerve growth factor inducibility in transfected primary cultured cells.J. Neurochem. 58, 1580–1583.PubMedCrossRefGoogle Scholar
  7. Björklund A., Moore R. Y., Nobin A., and Stenevi U. (1973) The organization of tuberohypophyseal and reticuloinfundibular catecholamine systems in the rat brain.Brain Res. 51, 171–191.PubMedCrossRefGoogle Scholar
  8. Bruce G., Wainer B. H., and Hersh L. B. (1985) Immunoaffinity purification of human choline acetyltransferase: comparison of the brain and placental enzymes.J. Neurochem. 45, 611–620.PubMedCrossRefGoogle Scholar
  9. Butcher L. L., Oh J. D., and Woolf N. J. (1993) Cholinergic neurons identified byin situ hybridization histochemistry.Prog. Brain Res. 98, 1–8.PubMedCrossRefGoogle Scholar
  10. Butcher L. L., Oh J. D., Woolf N. J., Edwards R. H., and Roghani A. (1992) Organization of central cholinergic neurons revealed by combinedin situ hybridization histochemistry and choline-O-acetyltransferase immunocytochemistry.Neurochem. Int. 21, 429–445.PubMedCrossRefGoogle Scholar
  11. Butcher L. L. and Woolf N. J. (1984) Histochemical distribution of acetylcholinesterase in the central nervous system: clues to the localization of cholinergic neurons, inClassical Transmitters and Transmitter Receptors in the CNS (Björklund A., Hökfelt T., and Kuhar M. J., eds.), Elsevier, Amsterdam, pp. 1–50.Google Scholar
  12. Cavicchioli J. F. R., Flanigan T. P., Dickson J. G., Vantini G., Dal Toso R., Fusco J., Walsh F. S., and Leon A. (1991) Choline acetyltransferase messenger RNA expression in developing and adult rat brain: regulation by nerve growth factor.Mol. Brain Res. 9, 319–325.PubMedCrossRefGoogle Scholar
  13. Chedotal A., Cozzari C., Faure M.-P., Hartman B. K., and Hamel E. (1994) Distinct choline acetyltransferase (ChAT) and vasoactive intestinal polypeptide (VIP) bipolar neurons project to local blood vessels in the rat cerebral cortex.Brain 646, 181–193.CrossRefGoogle Scholar
  14. Dun N. J. and Perlman R. L. (eds.) (1985)Neurobiology of Acetylcholine. Plenum, New York.Google Scholar
  15. Eckenstein F. and Baughman R. W. (1984) Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide.Nature 309, 153–155.PubMedCrossRefGoogle Scholar
  16. Eckenstein F. and Baughman R. W. (1987) The anatomical organization of the cholinergic system in the cerebral cortex, inThe Cerebral Cortex (Peters A. and Jones E. G., eds.), Plenum, New York, pp. 129–160.Google Scholar
  17. Eckenstein F. and Sofroniew M. V. (1983) Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase.J. Neurosci. 3, 2286–2291.PubMedGoogle Scholar
  18. Eckenstein F. and Thoenen H. (1983) Cholinergic neurons in the rat cerebral cortex demonstrated by immunohistochemical localization of choline acetyltransferase.Neurosci. Lett. 36, 211–215.PubMedCrossRefGoogle Scholar
  19. Engel A. G. (1984) Myasthenia gravis and myasthenic syndromes.Ann. Neurol. 16, 519–534.PubMedCrossRefGoogle Scholar
  20. Erickson J., Varoqui H., Schäfer M., Diebler M.-F., Weihe E., Modi W., Rand J., Eiden L. E., Bonner T. I., and Usdin T. (1994) Functional characterization of the mammalian vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus.J. Biol. Chem. 269, 21,929–21,932.Google Scholar
  21. Erickson J. D. and Eiden L. E. (1993) Functional identification and molecular cloning of a human brain vesicle monoamine transporter.J. Neurochem. 61, 2314–2317.PubMedCrossRefGoogle Scholar
  22. Erickson J. D., Eiden L. E., and Hoffman B. (1992) Expression cloning of a reserpinesensitive vesicular monoamine transporter.Proc. Natl. Acad. Sci. USA 89, 10,993–10,997.CrossRefGoogle Scholar
  23. Furness J. B., Costa M., and Eckenstein F. (1983) Neurons localized with antibodies against choline acetyltransferase in the enteric nervous system.Neurosci. Lett. 40, 105–109.PubMedCrossRefGoogle Scholar
  24. Goldberg A. M. and Hanin I. (eds.) (1976)Biology of Cholinergic Function. Raven, New York.Google Scholar
  25. Grando S. A., Kist D. A., Qi M., and Dahl M. V. (1993) Human keratinocytes synthesize, secrete, and degrade acetylcholine.J. Invest. Dermatol. 101, 32–36.PubMedCrossRefGoogle Scholar
  26. Hersh L. B., Kong C. F., Sampson C., Mues G., Li Y.-P., Fisher A., Hilt D., and Baetge E. E. (1993) Comparison of the promoter region of the human and porcine choline acetyltransferase genes: localization of an important enhancer region.J. Neurochem. 61, 306–314.PubMedCrossRefGoogle Scholar
  27. Houser C. R., Crawford G. D., Salvaterra P. M., and Vaughn J. E. (1985) Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses.J. Comp. Neurol. 234, 17–34.PubMedCrossRefGoogle Scholar
  28. Houser C. R., Crawford G. D., Barber R. P., Salvaterra P. M., and Vaughn J. E. (1983) Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase.Brain Res. 266, 97–119.PubMedCrossRefGoogle Scholar
  29. Ibanez C. F., Emfors P., and Persson H. (1991a) Developmental and regional expression of choline acetyltransferase mRNA in the rat central nervous system.J. Neurosci. Res. 29, 163–171.PubMedCrossRefGoogle Scholar
  30. Ibanez C., Pelto F., Huikko M., Soder O., Ritzen E. M., and Hersh L. B. (1991b) Expression of choline acetyltransferase mRNA in spermatogenic cells results in an accumulation of the enzyme in the postacrosomal region of mature spermmatozoa.Proc. Natl. Acad. Sci. USA 88, 3676–3680.PubMedCrossRefGoogle Scholar
  31. Kosterlitz H. W. and Lees G. M. (1964) Pharmacological analysis of intrinsic intestinal reflexes.Pharmacol. Rev. 16, 301–339.PubMedGoogle Scholar
  32. Lauterborn J. C., Isackson P. J., Montalvo R., and Gall C. M. (1993)In situ hybridization localization of choline acetyltransferase mRNA in adult rat brain and spinal cord.Mol. Brain Res. 17, 59–69.PubMedCrossRefGoogle Scholar
  33. Levey A. I., Armstrong D. M., Atweh S. F., Terry R. D., and Wainer B. H. (1983) Monoclonal antibodies to choline acetyltransferase: production, specificity, and immunohistochemistry.J. Neurosci. 3, 1–9.PubMedGoogle Scholar
  34. Levey A. I., Wainer B. H., Rye D. B., Mufson E. J., and Mesulam M. M. (1984) Choline acetyltransferase-immunoreactive neurons intrinsic to rodent cortex and distinction from acetylcholinesterase-positive neurons.Neuroscience 13, 341–353.PubMedCrossRefGoogle Scholar
  35. Lindsay R. M., Weigand S. J., Altar C. A., and DiStefano P. S. (1994) Neurotrophic factors: from molecule to man.TINS 17, 182–190.PubMedGoogle Scholar
  36. Liu Y., Peter D., Roghani A., Schuldiner S., Prive G. G., Eisenberg D., Brecha N., and Edwards R. H. (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter.Cell 70, 539–551.PubMedCrossRefGoogle Scholar
  37. Mahata S. K., Mahata M., Fischer-Colbrie R., and Winkler H. (1993) Vesicle monoamine transporters 1 and 2: differential distribution and regulation of their mRNAs in chromaffin and ganglion cells of rat adrenal medulla.Neurosci. Lett. 156, 70–72.PubMedCrossRefGoogle Scholar
  38. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., and Green M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter.Nucleic Acids Res. 12, 7035.PubMedCrossRefGoogle Scholar
  39. Misawa H., Ishii K., and Deguchi T. (1992)Gene expression of mouse choline acetyltransferase: alternative splicing and identification of a highly active promoter region.J. Biol. Chem. 267, 20,392–20,399.Google Scholar
  40. Mori N., Tajima Y., Sakaguchi H., Vandenbergh D. J., Nawa H., and Salvaterra P. M. (1993) Partial cloning of the rat choline acetyltransferase gene andin situ localization of its transcript in the cell body of cholinergic neurons in the brain stem and spinal cord.Mol. Brain Res. 17, 101–111.PubMedCrossRefGoogle Scholar
  41. Oh J. D., Woolf N. J., Roghani A., Edwards R. H., and Butcher L. L. (1992) Cholinergic neurons in the rat central nervous system demonstrated byin situ hybridization of choline acetyltransferase mRNA.Neuroscience 47, 807–822.PubMedCrossRefGoogle Scholar
  42. Patterson P. H. (1990) Control of cell fate in a vertebrate neurogenic lineage.Cell 62, 1035–1038.PubMedCrossRefGoogle Scholar
  43. Paxinos G. and Butcher L. L. (1985) Organizational principles of the brain as revealed by choline acetyltransferase and acetylcholinesterase distribution and projections, inThe Rat Nervous System (Paxinos G., ed.), Academic, New York, pp. 487–521.Google Scholar
  44. Perry E. K., Perry R. H., Blessed G., and Tomlinson B. E. (1977) Necropsy evidence of central cholinergic deficits in senile dementia.Lancet 1, 189.PubMedCrossRefGoogle Scholar
  45. Perry E. K., Tomlinson B. E., Blessed G., Bergman K., Gibson P. H., and Perry R. H. (1978) Correlation of cholinergic abnormalities with senile plaques and mental test-scores in senile dementia.Br. Med. J.,2, 1457–1459.PubMedCrossRefGoogle Scholar
  46. Piehl F., Arvidsson U., Johnson H., Cullheim S., Dagerlind A., Ulfhake B., Cao Y., Elde R., Pettersson R., Terenius L., et al. (1993) GAP-43, aFGF, CCK and alpha- and beta-CGRP in rat spinal motoneurons subjected to axotomy and/or dorsal root severance.Eur. J. Neurosci.,5, 1321–1333.PubMedCrossRefGoogle Scholar
  47. Rinner I. and Schauestein K. (1993) Detection of choline acetyltransferase in lymphocytes.J. Neurosci. Res.,35, 188–191.PubMedCrossRefGoogle Scholar
  48. Rodriguez S. J. and Morley R. J. (1985) Evidence that cell bodies in the arcuate nucleus of the hypothalamus are not cholinergic.Neuroendocrinology 41, 427–431.Google Scholar
  49. Satoh J., Gallyas F. Jr., Endoh M., Yamamura T., Kunishita T., and Tabira T. (1992) Coexistence of cholinergic, catecholaminergic, serotonergic, and glutamatergic neurotransmitter markers in mouse clonal hybrid neurons derived from the septal region.J. Neurosci. Res. 32, 127–137.PubMedCrossRefGoogle Scholar
  50. Schäfer M. K.-H., Nohr D., Romeo H., Eiden L. E., and Weihe E. (1994) Pan-neuronal expression of chromogranin A in rat nervous system.Peptides 15, 263–279.PubMedCrossRefGoogle Scholar
  51. Schäfer M. K.-H., Day R., Cullinan W. E., Chretien M., Seidah N. G., and Watson S. J. (1993) Gene expression of prohormone and proprotein convertases in the rat CNS: a comparativein situ hybridization analysis.J. Neurosci. 13, 1258–1279.PubMedGoogle Scholar
  52. Schemann M., Sann H., Schaaf C., and Mader M. (1993) Identification of cholinergic neurons in enteric nervous system by antibodies against choline acetyltransferase.Am. J. Physiol. 265, 1005–1009.Google Scholar
  53. Schuldiner S. (1994) A molecular glimpse of vesicular transporters.J. Neurochem. 62, 2067–2078.PubMedCrossRefGoogle Scholar
  54. Sherriff F. E. and Henderson Z. (1994) A cholinergic propriospinal innervation of the rat spinal cord.Brain Res. 634, 150–154.PubMedCrossRefGoogle Scholar
  55. Sofroniew M. V., Campbell P. E., Cuello A. C., and Eckenstein F. (1985) Central cholinergic neurons visualized by immunohistochemical detection of choline acetyltransferase, inThe Rat Nervous System (Paxinos G., ed.), Academic, New York, pp. 471–485.Google Scholar
  56. Svendsen C. N., Kew J. N., Staley K., and Sofroniew M. V. (1994) Death of developing septal cholinergic neurons following NGF withdrawal in vitro: protection by protein synthesis inhibition.J. Neurosci. 14, 75–87.PubMedGoogle Scholar
  57. Tago H., McGeer P. L., Bruce G., and Hersh L. B. (1987) Distribution of choline acetyltransferase-containing neurons of the hypothalamus.Brain Res. 415, 49–62.PubMedCrossRefGoogle Scholar
  58. Tata A. M., Plateroti M., Cibati M., Biagioni S., and Augusti T. G. (1994) Cholinergic markers are expressed in developing and mature neurons of chick dorsal root ganglia.J. Neurosci. Res. 37, 247–255.PubMedCrossRefGoogle Scholar
  59. Tinner B., Fuxe K., Kohler C., Hersh L., Andersson K., Jansson A., Goldstein M., and Agnati L. F. (1989) Evidence for the existence of a population of arcuate neurons costoring choline acetyltransferase and tyrosine hydroxylase immunoreactivities in the male rat.Neurosci. Lett. 99, 44–49.PubMedCrossRefGoogle Scholar
  60. Varoqui H., Diebler M.-F., Meunier F.-M., Rand J. B., Usdin T. B., Bonner T. I., Eiden L. E., and Erickson J. D. (1994) Cloning and expression of the vesamicol binding protein from the marine ray Torpedo. Homology with the putative vesicular acetylcholine transporter UNC-17 from Caenorhabditis elegans.FEBS Lett. 342, 97–102.PubMedCrossRefGoogle Scholar
  61. Wainer B. H., Levey A. I., Mufson E. J., and Mesulam M. M. (1984) Cholinergic systems in mammalian brain identified with antibodies against choline acetyltransferase.Neurochem. Int.,2, 163–182.CrossRefGoogle Scholar
  62. Weihe E. (1992) Neurochemical anatomy of the mammalian spinal cord: functional implications.Ann. Anat.,174, 89–118.PubMedGoogle Scholar
  63. Whittaker V. P. (ed.) (1988)The Cholinergic Synapse. Springer-Verlag, Berlin.Google Scholar
  64. Woolf N. J. and Butcher L. L. (1985) Cholinergic systems in the rat brain: II. Projections to the interpeduncular nucleus.Brain Res. Bull. 14, 63–83.PubMedCrossRefGoogle Scholar
  65. Woolf N. J. and Butcher L. L. (1986) Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain.Brain Res. Bull. 16, 603–637.PubMedCrossRefGoogle Scholar
  66. Woolf N. J., Eckenstein F., and Butcher L. L. (1984) Cholinergic systems in the rat brain: I. Projections to the limbic telencephalon.Brain Res. Bull. 13, 751–784.PubMedCrossRefGoogle Scholar
  67. Wu D. and Hersh L. B. (1994) Choline acetyltransferase: celebrating its fiftieth year.J. Neurochem. 62, 1653–1663.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1994

Authors and Affiliations

  • Martin K. -H. Schäfer
    • 1
  • Eberhard Weihe
    • 1
  • Hélène Varoqui
    • 2
  • Lee E. Eiden
    • 2
  • Jeffrey D. Erickson
    • 2
  1. 1.Department of AnatomyJohannes-Gutenberg UniversitätMainzFRG
  2. 2.Section on Molecular Neuroscience, Laboratory of Cell BiologyNational Institute of Mental Health, National Institutes of HealthBethesda

Personalised recommendations