Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 12, Issue 3, pp 737–755 | Cite as

Nonlinear chiral lagrangians and the ΔI=1/2 rule

  • G. Riela
Article
  • 16 Downloads

Summary

A nonlinear chiral Lagrangian with symmetry breaking describing vector, pseudovector and pseudoscalar mesons is constructed. The weak currents deduced via field-current identities are used to compute to zeroth order in (m π 2 /m ρ 2 ) the K → 2π decays. The ΔI=1/2 rule is found to hold and an estimate for the mass of the intermediate vector boson is given.

--Нелнейные киральные лагранжианы и правило ΔI=1/2

Реэюме

Конструируется нелинейный киральный лагранжиан с нарущением симметрии, который описывает векторные, псевдовекторные и псевдоскалярные меэоны. Слабые токи, выведенные череэ полевые токовые тождества, испольэуются для вычисления К → 2π распадов в нулевом порядке поm π 2 /m ρ 2 . Получается, что правило ΔI=1/2 выполняется. Приводится оценка для массы промежуточного векторного боэона.

Riassunto

Si costruisce una lagrangiana chirale non lineare con violazione di simmetria che descrive mesoni vettoriali, pseudovettoriali e pseudoscalari. Le correnti deboli introdotte tramite le identità correnti-campi sono usate per calcolare all’ordine zero inm π 2 /m ρ 2 i decadimenti K→2π. Si trova che la regola di selezione ΔI=1/2 è soddisfatta e si dà una stima della massa del bosone vettoriale intermedio.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    SeeS. L. Adler andR. F. Dashen:Current Algebras (New York, 1968);B. Renner:Current Algebras and Their Applications (Oxford, 1968), and references quoted therein.Google Scholar
  2. (2).
    S. L. Adler:Phys. Rev.,140, B 736 (1965);W. I. Weisberger:Phys. Rev.,143, 1302 (1966).MathSciNetCrossRefADSGoogle Scholar
  3. (3).
    C. G. Callan andS. B. Treiman:Phys. Rev. Lett.,16, 153 (1966).MathSciNetCrossRefADSGoogle Scholar
  4. (4).
    T. Das, G. S. Guralnik, V. S. Mathur, F. E. Low andJ. E. Young:Phys. Rev. Lett.,18, 759 (1967).CrossRefADSGoogle Scholar
  5. (5).
    An excellent review paper with an extensive bibliography on the subject isS. Gasiorowicz andD. A. Geffen:Rev. Mod. Phys.,41, 531 (1969).MathSciNetCrossRefADSGoogle Scholar
  6. (6).
    S. Coleman, J. Wess andB. Zumino:Phys. Rev.,177, 2239 (1969);C. G. Callan, S. Coleman, J. Wess andB. Zumino:Phys. Rev.,177, 2247 (1969).CrossRefADSGoogle Scholar
  7. (7).
    See ref (6) andT. D. Lee: Remarks on the ΔI=1/2rule in nonleptonic weak decays and the use of the phenomenological Lagrangian, B.N.L. Lectures (May 1970).CrossRefADSGoogle Scholar
  8. (8).
    See for instance,V. F. Müller:Introduction to the Lagrangian method, inSpringer Tracts in Modern Physics, Vol.50 (1969).Google Scholar
  9. (9).
    A similar proposition is proved in ref. (7). We use however the infinitesimal transformation approach ofA. Joseph andA. I. Solomon:Journ. Math. Phys.,11, 748 (1970).CrossRefADSGoogle Scholar
  10. (10).
    See, for instance,K. Dietz andJ. Honerkamp:Zeits. Phys.,222, 46 (1969).CrossRefADSMATHGoogle Scholar
  11. (11).
    M. Gell-Mann, R. J. Oakes andB. Renner:Phys. Rev.,175, 2195 (1968).CrossRefADSGoogle Scholar
  12. (12).
    N. Suzuki:Phys. Rev.,144, 1154 (1966);D. K. Elias andJ. C. Taylor:Nuovo Cimento,44 A, 518 (1966);W. Alles andR. Jengo:Nuovo Cimento,42 A, 419 (1966);B. R. Holstein:Phys. Rev.,171, 1668 (1968).CrossRefADSGoogle Scholar
  13. (13).
    B. D’Espagnat andJ. Iliopulos:Phys. Lett.,21, 232 (1966);C. Bouchat andP. Meyer:Phys. Lett.,22, 198 (1966), and ref. (7).CrossRefADSGoogle Scholar
  14. (14).
    S. L. Glashow, A. J. Schnitzer andS. Weinberg:Phys. Rev. Lett.,19, 139 (1967).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1972

Authors and Affiliations

  • G. Riela
    • 1
  1. 1.Istituto di Fisica dell’UniversitàPalermo

Personalised recommendations