Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 27, Issue 6, pp 598–604 | Cite as

Carbon diffusion in steels: A numerical analysis based on direct integration of the flux

  • Olga Karabelchtchikova
  • Richard D. Sisson
Section I: Basic And Applied Research

Abstract

In the early 1970s, Professor Dayananda developed a technique for the direct integration of fluxes from the concentration profiles in vapor-solid diffusion couples to determine diffusion coefficients and atomic mobilities. As part of a project to control and optimize the industrial carburization process in mild- and low-alloyed steels, a modified integration analysis was applied to determine the mass transfer coefficient in the gas boundary layer and carbon diffusivity in austenite. Because carbon flux and surface carbon content vary with time during single-stage carburizing even with a fixed carbon potential in the atmosphere, a mass balance at the gas-solid interface must serve as a boundary condition. This article discusses the numerical modeling of gas carburizing, and focuses on calculating the mass transfer and carbon diffusivity parameters using the simulated concentration profiles. This approach validates the proposed method by comparing the calculated parameters with those used in simulation. The results were compared with previous determinations and predictions reported in the literature.

Keywords

carburization computation concentration profiles diffusion modeling diffusivity coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Wells and R.F. Mehl, Rate of Diffusion of Carbon in Austenite in Plain Carbon, in Nickel and in Manganese Steels, American Institute Mining Metallurgical Engineers, Technical Publication, 1940, p 1180Google Scholar
  2. 2.
    K.E. Blazek and P.R. Cost, Carbon Diffusivity in Iron-Chromium Alloys,Trans. Jpn. Inst. Met., 1976,17(10), p 630–636Google Scholar
  3. 3.
    W. Batz and R.F. Mehl, Diffusion Coefficient of Carbon in Austenite,Trans. AIME, 1950,188, p 553–560Google Scholar
  4. 4.
    P. Stolar and B. Prenosil, Kinetics of Transfer of Carbon from Carburising and Carbonitriding Atmospheres,Metall. Mater., 1984,22(5), p 348–353Google Scholar
  5. 5.
    B.A. Moiseev, Y.M. Brunzel’, and L.A. Shvartsman, Kinetics of Carburizing in an Endothermal Atmosphere,Met. Sci. Heat Treat., 1979,21(5–6), p 437–442CrossRefGoogle Scholar
  6. 6.
    H.W. Walton, Mathematical Modeling of the Carburising Process for Microprocessor Control,Heat Treat. Met., 1983,10(1), p 23–26Google Scholar
  7. 7.
    E.L. Gyulikhandanov and A.D. Khaidorov, Carburizing Low-Carbon Heat-Resistant Steels Containing Molybdenum and Titanium,Met. Sci. Heat Treat., 1991,33(5–6), p 344–348CrossRefGoogle Scholar
  8. 8.
    M. Yan, Z. Liu, and G. Zu, The Mathematical Model of Surface Carbon Concentration Growth during Gas Carburization,Mater. Sci. Prog., 1992,6(3), p 223–225 (in Chinese)Google Scholar
  9. 9.
    T. Turpin, J. Dulcy, and M. Gantois, Carbon Diffusion and Phase Transformations during Gas Carburizing of High-Alloyed Stainless Steels: Experimental Study and Theoretical Modeling,Metall. Trans. A, 2005,36(10), p 2751–2760CrossRefGoogle Scholar
  10. 10.
    A. Ruck, D. Monceau, and H.J. Grabke, Effects of Tramp Elements Cu, P, Pb, Sb and Sn on the Kinetics of Carburization of Case Hardening Steels,Steel Res., 1996,67(6), p 240–246Google Scholar
  11. 11.
    R. Collin, S. Gunnarson, and D. Thulin, Mathematical Model for Predicting Carbon Concentration Profiles of Gas-Carburized Steel,J. Iron Steel Inst., 1972,210, p 785–789Google Scholar
  12. 12.
    R.P. Smith, The Diffusivity of Carbon in Iron by Steady-State Method,Acta Metal., 1953,1, p 578–587CrossRefGoogle Scholar
  13. 13.
    S.K. Bose and H.J. Grabke, Diffusion Coefficient of Carbon in Fe-Ni Austenite in the Temperature Range 950–1100 Degree C,Z. Metallkd., 1978,69(1), p 8–15Google Scholar
  14. 14.
    S.K. Roy, H.J. Grabke, and W. Wepner, Diffusivity of Carbon in Austenitic Fe-Si-C Alloys,Arch. Eisenhuett., 1980,51(3), p 91–96Google Scholar
  15. 15.
    C. Matano, On the Relation Between the Diffusion-Coefficients and Concentrations of Solid Metals,Jpn. J. Phys., 1933,8(3), p 109–113Google Scholar
  16. 16.
    M.A. Dayananda, Atomic Mobilities in Multicomponent Diffusion and Their Determination,Trans. AIME, 1968,242, p 1369–1372Google Scholar
  17. 17.
    M.A. Dayananda and C.W. Kim, Zero-Flux Planes and Flux Reversals in Cu-Ni-Zn Diffusion Couples,Metall. Trans. A, 1979,10(9), p 1333–1339Google Scholar
  18. 18.
    P.T. Carlson, M.A. Dayananda, and R.E. Grace, Diffusion in Ternary Ag-Zn-Cd Solid Solutions,Metall. Trans. A, 1972,3(4), p 819–826CrossRefGoogle Scholar
  19. 19.
    A.L. Hurley and M.A. Dayananda, Multiphase Diffusion in Ag-Zn Alloys,Metall. Trans. A, 1970,1(1), p 139–143Google Scholar
  20. 20.
    N.R. Iorio, M.A. Dayananda, and R.E. Grace, Intrinsic Diffusion and Vacancy Wind Effects in Ag-Cd Alloys,Metall. Trans. A, 1973,4(5), p 1339–1346CrossRefGoogle Scholar
  21. 21.
    G.H. Cheng, M.A. Dayananda, and R.E. Grace, Diffusion Studies in Ag-Zn Alloys,Metall. Trans. A, 1975,6(1), p 21–27CrossRefGoogle Scholar
  22. 22.
    J. Dulcy, P. Bilger, D. Zimmermann, and M. Gantois, Characterization and Optimization of a Carburizing Treatment in Gas Phase: Definition of a New Process,Metall. Ital., 1999,91(4), p 39–44Google Scholar
  23. 23.
    W.H. McAdams,Heat Transmission, New York, McGraw-Hill, 1954, p 43–50Google Scholar
  24. 24.
    B. Million, K. Bacilek, J. Kucera, P. Michalicka, and A. Rek, Carbon Diffusion and Thermodynamic Characteristics in Chromium Steels,Z. Metllkd., 1995,86(10), p 706–712 (Materials Research and Advanced Techniques)Google Scholar
  25. 25.
    J. Kucera and K. Stransky, The Dependence of Carbon Diffusion Coefficients in Austenitic Ternary Alloys on Concentration of Additive Elements,Acta Tech. CSAV, 2003,48(4), p 353–364 (Ceskoslovensk Akademie Ved)Google Scholar
  26. 26.
    R.P. Smith, The Diffusivity of Carbon in γ-Fe-Co Alloys,Trans. AIME, 1964,230, p 476–480Google Scholar
  27. 27.
    M.M. Thete, Simulation of Gas Carburising: Development of Computer Program with Systematic Analyses of Process Variables Involved,Surf. Eng., 2003,19(3), p 217–228CrossRefGoogle Scholar
  28. 28.
    G.G. Tibbetts, Diffusivity of Carbon in Iron and Steels at High Temperatures,J. Appl. Phys., 1980,51(9), p 4813–4816CrossRefADSGoogle Scholar
  29. 29.
    J.I. Goldstein and A.E. Moren, Diffusion Modeling of the Carburization Process,Metall. Trans. A, 1978,9(11), p 1515–1525CrossRefGoogle Scholar
  30. 30.
    G.E. Totten and M.A.H. Howes,Steel Heat Treatment Handbook, Marcel Dekker, Inc., New York, 1997Google Scholar
  31. 31.
    L. Sproge and J. Agren, Experimental and Theoretical Studies of Gas Consumption in the Gas Carburizing Process,J. Heat Treat., 1988,6, p 9–19Google Scholar
  32. 32.
    J. Agren, Revised Expression for the Diffusivity of Carbon in Binary Fe-C Austenite,Scripta Metall., 1986,20(11), p 1507–1510CrossRefGoogle Scholar
  33. 33.
    R.M. Asimow, Analysis of the Variation of the Diffusion Constant of Carbon in Austenite with Concentration,Trans. AIME, 1964,230(3), p 611–613Google Scholar
  34. 34.
    J. Crank,The Mathematics of Diffusion, 1st ed., Oxford, UK, Clarendon Press, 1956, p 42–62MATHGoogle Scholar
  35. 35.
    K.E. Rimmer, E. Schwarz-Bergkampf, and J. Wunning, Surface Reaction Rate in Gas Carburizing,Haerterei-Technische Mitteilungen, 1975,30(3), p 152–160Google Scholar

Copyright information

© ASM International 2006

Authors and Affiliations

  1. 1.Worcester Polytechnic InstituteCenter for Heat Treating Excellence Materials Science and EngineeringWorcester

Personalised recommendations