Advertisement

A new front updating solution applied to some engineering problems

  • N. Kovač
  • S. Gotovac
  • D. Poljak
Article

Summary

An automatic mesh generation dealing with domains of an arbitrary shape could be realized by an advancing front method. The mesh generator based on this method creates triangle elements inside a domain starting with the polygonal (polyhedral in 3D) discretisation of its border. In this paper an original algorithm for the front updating procedures as a part of the mesh generator is presented. The proposed algorithm provides an efficient mesh generation procedure. It has been verified on the various domains with complex geometry and with nonuniform distribution of edge nodes such as the discretisation of the switched reluctance motor and power cable configuration, respectively. The related finite element calculations are carried out.

Keywords

Mesh Generation Front Edge Edge Node Short Edge Power Cable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Poljak, B. Jajac and N. Kovac (2000), “Time-domain Hallen integral equation approach to a lightning channel modeling”,EMC Europe 2000, 4th European Symposium on Electromagnetic Compatibility, Brugge, Belgium, September.Google Scholar
  2. 2.
    D. Poljak (1995), “New numerical approach in analysis of thin wire radiating over lossy half-space”,Int. J. Numer. Meth. Eng.,38, 3803–3816.MATHCrossRefGoogle Scholar
  3. 3.
    D. Poljak (1998), “Finite element integral equation modelling of a thin wire loop antenna”,Comm. Numer. Meth. Eng.,14, 347–354.MATHCrossRefGoogle Scholar
  4. 4.
    D. Poljak (1998), “Transient response of resistevely loaded straight thin wire in half space configuration”,Journ. Electromagnetic Waves and Applications,12, 775–787.MATHGoogle Scholar
  5. 5.
    D. Poljak and V. Roje (1998), “Time domain modelling of electromagnetic field coupling to transmission lines”,Proc. 1998 IEEE EMC Symposium, Denver, USA, 1010–1013, August.Google Scholar
  6. 6.
    N. Kovac, B. Jajac and D. Poljak (2000), “Domain optimization in FEM modelling of power cable heat transfer”,Heat Transfer 2000, Sixth International Conference on Advanced Computational Methods in Heat Transfer, Madrid, Spain, June.Google Scholar
  7. 7.
    S. Gotovac (1994), “Geschalteter Reluktanzmotor für Positionantriebe”, Dissertation Fakultät Elektrotechnik der Technische Universität Berlin.Google Scholar
  8. 8.
    N. Kovac, B. Jajac and D. Poljak (1999), “Discretisation model of the SRM”,10th DAAM International Symposium, Vienna University of Technology, Vienna, Austria, October.Google Scholar
  9. 9.
    P.L. George (1991), “Automatic mesh generation”,Applications to Finite Element Methods, Wiley, New York.MATHGoogle Scholar
  10. 10.
    W.J. Gordon and C.A. Hall (1973), “Construction of curvilinear coordinate system and applications to mesh generation”,Int. J. Numer. Meth. Eng.,7, 461–477.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M.A. Yerri and M.S. Shepard (1984), “Automatic 3D mesh generation by the modified-octree technic”,Int. J. Numer. Meth. Eng.,20, 1965–1990.CrossRefGoogle Scholar
  12. 12.
    A. Ecer, J.T. Spyropoulos and J.D. Maul (1985), “A three dimensional block-structured finite element grid generation scheme”,AIAA Journal,23, 1483–1490.MATHMathSciNetGoogle Scholar
  13. 13.
    S.H. Lo (1989), “Delaunay triangulation of non-convex planar domains”,Int. J. Numer. Meth. Eng.,28, 2695–2707.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    W.J. Schroeder and M.S. Shepard (1988), “Geometry-based fully automatic mesh generation and Delaunay triangulation”,Int. J. Numer. Meth. Eng.,26, 2503–2515.MATHCrossRefGoogle Scholar
  15. 15.
    P.L. George and F. Hermeline (1992), “Delaunay’s mesh of a convex polyhendron in dimensiond. Application to arbitrary polyhedra”,Int. J. Numer. Meth. Eng.,33, 975–995.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    D.L. Marcum and N.P. Weatherill (1994), “A procedure for efficient generation of solution adapted unstructured grids”,Comput. Methods Appl. Mech. Eng.,127, 259–268.CrossRefGoogle Scholar
  17. 17.
    P.L. George and E. Seveno (1994), “The advancing front mesh generation method revisited”,Int. J. Numer. Meth. Eng.,37, 3605–3619.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    S.H. Lo (1985), “A new mesh generation scheme for arbitrary planar domains”,Int. J. Numer. Meth. Eng.,21, 1403–1426.MATHCrossRefGoogle Scholar
  19. 19.
    H. Jin and N.E. Wiberg (1990), “Two-dimensional mesh generation, adaptive remeshing and refinement”,Int. J. Numer. Meth. Eng.,29, 1501–1526.CrossRefGoogle Scholar
  20. 20.
    J. Peraire, J. Piero, L. Formaggia, K. Morgan and O.C. Zienkiewicz, “Finite element Euler computations in three dimensions”,Int. J. Numer. Meth. Eng.,26, 2135–2159.Google Scholar
  21. 21.
    H. Jin and R.I. Tanner (1993), “Generation of unstructured tetrahedral meshes by advancing front technique”,Int. J. Numer. Meth. Eng.,36, 1805–1823.MATHCrossRefGoogle Scholar
  22. 22.
    P. Moller and P. Hansbo (1985), “On advancing front mesh generation in three dimensions”,Int. J. Numer. Meth. Eng.,38, 3551–3569.CrossRefMathSciNetGoogle Scholar
  23. 23.
    R. Löhner (1996), “Extensions and improvements of the advancing front grid generation technique”,Comm. Numer. Meth. Eng.,12, 683–702.MATHCrossRefGoogle Scholar
  24. 24.
    C.T. Chan and K. Anastasion (1997), “An automatic tetrahedral mesh generation scheme by the advancing front method”,Comm. Numer. Meth. Eng.,13, 33–46.MATHCrossRefGoogle Scholar
  25. 25.
    R. Löhner and E. Oñate (1998), “An advancing front point generation technique”,Comm. Numer. Meth. Eng.,14, 1097–1108.MATHCrossRefGoogle Scholar
  26. 26.
    S.J. Owen, M.L. Staten, S.A. Canann and S. Saigal (1999), “Q-Morph: An indirect approach to advancing front quad meshing”,Int. J. Numer. Meth. Eng.,9, 1317–1340.CrossRefGoogle Scholar
  27. 27.
    S.J. Owen and S. Saigal (2000), “H-Morph: An indirect approach to advancing front hex meshing”,Int. J. Numer. Meth. Eng.,1, 289–312.CrossRefGoogle Scholar
  28. 28.
    R. Löhner (2001), “A parallel advancing front grid generation scheme”,Int. J. Numer. Meth. Eng.,51, 663–678.MATHCrossRefGoogle Scholar
  29. 29.
    S.H. Lo (1991), “Automatic mesh generation and adaptation using contours”,Int. J. Numer. Meth. Eng.,31, 689–707.MATHCrossRefGoogle Scholar
  30. 30.
    J. Fang, I.H. Parpia and S.R. Kennon (1993), “Sweepline algorithm for unstructured grid generation on two-dimensional non-convex domains”,Int. J. Numer. Meth. Eng.,36, 2761–2778.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    J.Z. Zhu, O.C. Zienkiewicz, E. Hinton and J. Wu (1991), “A new approach to the development of automatic quadrilateral mesh generation”,Int. J. Numer. Meth. Eng.,32, 849–866.MATHCrossRefGoogle Scholar
  32. 32.
    W.H. Frey and D.A. Field (1991), “Mesh relaxation; A new technique for improving triangulations”,Int. J. Numer. Meth. Eng.,31, 1121–1133.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    P. Hansbo (1995), “Generalized Laplacian smoothing of unstructured grids”,Comm. Numer. Meth. Eng.,11, 455–464.MATHCrossRefGoogle Scholar
  34. 34.
    J.C. Cavendish (1974), “Automatic triangulations of arbitrary planar domains for the finite element method”,Int. J. Numer. Meth. Eng.,8, 679–696.MATHCrossRefGoogle Scholar
  35. 35.
    J.C. Cavendish, D.A. Field and W.H. Frey (1985), “An approach to automatic three-dimensional finite element mesh generation”,Int. J. Numer. Meth. Eng.,21, 329–347.MATHCrossRefGoogle Scholar
  36. 36.
    M. Stiebler and R. Li (1992), “Calculation of Magnetic Field of a Switched Reluctance Motor using Microcomputer”,ETEP,2, No.2, 97–101.Google Scholar
  37. 37.
    G.E. Dawson, A.R. Eastham and J. Mizia (1987), “Switched Reluctance Motor Torque Characteristics: Finite Element Analysis and Test Results”,IEEE Trans. on Industry Applications,23, No.3, 532–537.Google Scholar
  38. 38.
    T.J.E. Miller (1993),Switched Reluctance Motors and Their Control, Magna Physics Publishing and Clarendon Press, Oxford.Google Scholar
  39. 39.
    M. Moallem and C.M. Ong (1990), “Predicting the Torque of a Switched Reluctance Machine from its Finite Element Field Solution”,IEEE Trans. on Energy Conversion,5, No.4, 733–739.CrossRefGoogle Scholar
  40. 40.
    M. Moallem and C.M. Ong (1991), “Predicting the Steady-State Performance of a Switched Reluctance Machine”,IEEE Trans. on Industry Application,27, No.6, 1087–1097.CrossRefGoogle Scholar
  41. 41.
    M. Stiebler and S. Gotovac (1993), “A Switched Reluctance Servo Drive”,5th European Conference on Power Electronics and Applications, Brighton,5, 436–441, September.Google Scholar
  42. 42.
    C.C. Hwang (1997), “Calculation of Thermal Fields of Underground Cable Systems with Consideration of Structural Steels Constructed in a Duct Bank”,IEE Proc. Gener. Transm. Distrib.,144, No.6, 541–545.CrossRefGoogle Scholar
  43. 43.
    M.A. El-Kady (1984), “Calculation of the Sensitivity of Power Cable Ampacity to Variations of Design and Environmental Parameters”,IEEE Trans. on Power Apparatus and Systems,103, No.8, 2043–2050.CrossRefGoogle Scholar
  44. 44.
    J.K. Mitchell and O.N. Abdel-Hadi (1979), “Temperature Distribution around Buried Cable”,IEEE Trans. on Power Apparatus and Systems,98, No.4, 1158–1166.CrossRefGoogle Scholar
  45. 45.
    N. Flatabo (1973), “Transient Heat Conduction Problems in Power Cables Solved by Finite Element Method”,IEEE Trans. on Power Apparatus and Systems,92, 56–63.CrossRefGoogle Scholar
  46. 46.
    M.A. Hanna, A.Y. Chikhani and M.M.A. Salama (1993), “Thermal analysis of Power Cables in Multy-Layered Soil. Part 1: Theoretical Model”,IEEE Trans. on Power Delivery,8, No. 3, 761–771.CrossRefGoogle Scholar
  47. 47.
    M.A. Hanna, A.Y. Chikhani and M.M.A. Salama (1993), “Thermal analysis of Power Cables in Multy-Layered Soil. Part 2: Practical Considerations”,IEEE Trans. on Power Delivery,8, No.3, 772–778.CrossRefGoogle Scholar
  48. 48.
    M.A. Hanna, A.Y. Chikhani and M.M.A. Salama (1994), “Thermal analysis of Power Cables in Multy-Layered Soil. Part 3: Case of Two Cables in a Trench”,IEEE Trans. on Power Delivery,9, No.1, 572–579.CrossRefGoogle Scholar
  49. 49.
    M.A. Hanna, A.Y. Chikhani and M.M.A. Salama (1998), “Thermal analysis of Power Cables in a Trench in Multy-Layered Soil”,IEEE Trans. on Power Delivery,13, No.2, 304–309.CrossRefGoogle Scholar
  50. 50.
    M.A. Kellow (1981), “A Numerical Procedure for the Calculation of The Temperature Rise and Ampacity of Underground Cables”,IEEE Trans. on Power Apparatus and Systems,100, No.7, 3322–3330.CrossRefGoogle Scholar
  51. 51.
    G.J. Anders, A.K.T. Napieralski and W. Zamojski (1998), “Calculation of Internal Thermal Resistance and Ampacity of 3-Core Unscreened Cables with Fillers”,IEEE Trans. on Power Delivery,13, No.3, 699–705.CrossRefGoogle Scholar
  52. 52.
    M.A. El-Kady, J. Motlis, G.A. Anders and D.J. Horrocks (1988), “Modified Values for Geometric Factor of External Thermal Resistance of Cables in Duct Banks”,IEEE Trans. on Power Delivery,3, No.4, 1303–1309.CrossRefGoogle Scholar
  53. 53.
    G.J. Anders, M. Chaaban, N. Bedard and R.W.D. Ganton (1987), “New Approach to Ampacity Evaluation of Cables in Ducts Using Finite Element Technique”,IEEE Trans. on Power Delivery,2, No.4, 969–975.CrossRefGoogle Scholar
  54. 54.
    W.Z. Black and Sang-il Park (1983), “Emergency Ampacities of Direct Buried Three Pfase Underground Cable Systems”,IEEE Trans. on Power Apparatus and Systems,102, No.7, 2124–2132.CrossRefGoogle Scholar
  55. 55.
    B. Jajac and D. Poljak (1995), “Utjecaj kabelske posteljice na odvodenje topline kod energetskog kabela (I dio: Matematicki model)”,Elektrotehnika,38.Google Scholar
  56. 56.
    B. Jajac and D. Poljak (1995), “Utjecaj kabelske posteljice na odvodenje topline kod energetskog kabela (II dio:Rubni uvjeti i rezultati proracuna)”,Elektrotehnika,38.Google Scholar
  57. 57.
    S. Milun, T. Kilic, O. Bego and G. Petrovic (1999), “Protokol o ispitivanju geotermickih i geoelektrickih znacajki tla na trasi kabelske 110 kV mree Splita”, Split.Google Scholar
  58. 58.
    G. Gela and J.J. Dai (1988), “Calculation of thermal fields of underground cables using the boundary element method”,IEEE Transactions on Power Delivery,3, No.4, October.Google Scholar
  59. 59.
    J.A. Williams, D. Parmar and M.W. Conroy (1993), “Controlled Backfill Optimization to Achieve High Ampacities on Transmission Cables”,IEEE Transactions on Power Delivery,9, No.1, 544–550, October.CrossRefGoogle Scholar
  60. 60.
    J.H. Neher and M.H. McGrath (1957), “Calculation of the Temperature Rise and Load Capability of Cable Systems”,AIEE Trans., 752–772, October.Google Scholar
  61. 61.
    C.A. Bauer and R.J. Nease (1958), “A Study of the Superposition of Heat Fields and the Kennely Formula as Applied to Underground Cable Systems”,AIEE Trans., 1330–1337, February.Google Scholar
  62. 62.
    J.V. Schmill (1960), “Mathematical Solution to the Problem of the Control of the Thermal Environment of Buried Cables”,AIEE Trans., 175–185, June.Google Scholar
  63. 63.
    E. Tarasiewicz, M.A. El-Kady and G.J. Anders (1987), “Generalized Coefficients of External Thermal Resistance for Ampacity Evaluation of Underground Multiple Cable Systems”,IEEE Trans. on Power Delivery,2, No.1, 15–20.Google Scholar
  64. 64.
    M.A. El-Kady and D.J. Horrocks (1985), “Extended Values for Geometric Factor of External Thermal Resistance of Cables in Duct Banks”,IEEE Trans. on Power Apparatus and Systems,PAS-104, No.8.Google Scholar
  65. 65.
    M. Kellow (1981), “Experimental Investigation of the Ampacity of Distribution Cables in a Duct Bank with and without Forced Cooling”,IEEE Trans. on Power Apparatus and Systems,PAS-100, No.7.Google Scholar
  66. 66.
    M.A. El-Cady, H. Radhakrishna, D.J. Horrocks and R. Ganton (1984), “A Probabilistic Approach to Power Cable Thermal Analysis and Ampacity Calculation”IEEE Trans. on Power Apparatus and Systems,PAS-103, No.9.Google Scholar
  67. 67.
    I. Gizdic, N. Kovac, D. Poljak and B. Jajac (1999), “Modeliranje prijenosa topline kod podzemnih kabela metodom konacnih elemenata”,Elektrika,2, Studeni-Prosinac.Google Scholar

Copyright information

© CIMNE 2002

Authors and Affiliations

  • N. Kovač
    • 1
  • S. Gotovac
    • 2
  • D. Poljak
    • 2
  1. 1.Department of Electrical EngineeringSplit UniversityCroatia
  2. 2.Department of ElectronicsSplit UniversityCroatia

Personalised recommendations