Recent advances in the DtN FE Method

  • D. Givoli


The Dirichlet-to-Neumann (DtN) Finite Element Method is a general technique for the solution of problems in unbounded domains, which arise in many fields of application. Its name comes from the fact that it involves the nonlocal Dirichlet-to-Neumann (DtN) map on an artificial boundary which encloses the computational domain. Originally the method has been developed for the solution of linear elliptic problems, such as wave scattering problems governed by the Helmholtz equation or by the equations of time-harmonic elasticity. Recently, the method has been extended in a number of directions, and further analyzed and improved, by the author's group and by others. This article is a state-of-the-art review of the method. In particular, it concentrates on two major recent advances: (a) the extension of the DtN finite element method tononlinear elliptic and hyperbolic problems; (b) procedures forlocalizing the nonlocal DtN map, which lead to a family of finite element schemes with local artificial boundary conditions. Possible future research directions and additional extensions are also discussed.


Nite Helmholtz Equation Unbounded Domain Exterior Domain Wave Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Givoli (1992),Numerical Methods for Problems in Infinite Domains, Elsevier, Amsterdam.MATHGoogle Scholar
  2. 2.
    Exterior Problems of Wave Propagation, special issue, D. Givoli and I. Harari, eds. (1998),Comput. Meth. Appl. Mech. Engng., Vol.164, Nos. 1–2.Google Scholar
  3. 3.
    D. Givoli (1991), “Non-Reflecting Boundary Conditions”,J. of Computational Physics,94, pp. 1–29.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    B. Gustafsson and H.-O. Kreiss (1979), “Boundary Conditions for Time Dependent Problems With an Artificial Boundary”,J. Comp. Phys.,30, pp. 333–351.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Ferm and B. Gustafsson (1982), “A Down-Stream Boundary Procedure for the Euler Equations”,Comp. Fluids,10, pp. 261–276.MATHCrossRefGoogle Scholar
  6. 6.
    T. Hagstrom and H.B. Keller (1986), “Exact Boundary Conditions at an Artificial Boundary for Partial Differential Equations in Cylinders”,SIAM J. Math. Anal.,17, pp. 322–341.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Hagstrom and H.B. Keller (1987), “Asymptotic Boundary Conditions and Numerical Methods for Nonlinear Elliptic Problems on Unbounded Domains”,Math. Comput.,48, pp. 449–470.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    L. Ting and M.J. Miksis (1986), “Exact Boundary Conditions for Scattering Problems”,J. Acoust. Soc. Am.,80, pp. 1825–1827.CrossRefGoogle Scholar
  9. 9.
    D. Givoli and D. Cohen (1995), “Non-reflecting Boundary Conditions Based on Kirchhoff-type Formulac”,J. of Computational Physics,117, pp. 102–113.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    M.J. Grote and J.B. Keller (1995), “Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation”,SIAM J. of Appl. Math.,55, pp. 280–297.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    M.J. Grote and J.B. Keller (1996), “Nonreflecting Boundary Conditions for Time Dependent Scattering”,J. of Comput. Phys.,127, pp. 52–65.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    S.V. Tsynkov (1995), “An Application of Nonlocal External Conditions to Viscous Flow Computations”,J. Comput. Phys.,116, pp. 212–225.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    S.V. Tsynkov, E. Turkel and S. Abarbanel (1996), “External Flow Computations Using Global Boundary Conditions”,AIAA J.,34, pp. 700–706.Google Scholar
  14. 14.
    H. Han and X. Wu (1992), “The Approximation of the Exact Boundary Conditions at an Artificial Boundary for Linear Elastic Equations and its Application”,Math. of Comput.,59, 21–37.MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    J.B. Keller and D. Givoli (1989), “Exact Non-Reflecting Boundary Conditions”,J. Comput. Phys.,82, pp. 172–192.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Givoli and J.B. Keller (1989), “A Finite Element Method for Large Domains”,Comput. Meth. Appl. Mech. Engng.,76, pp. 41–66.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    G.J. Fix and S.P. Marin (1978), “Variational Methods for Underwater Acoustic Problems”,J. Comp. Phys.,28, pp. 253–270.MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    R.C. MacCamy and S.P. Marin (1980), “A Finite Element Method for Exterior Interface Problems”,Int. J. Math. Math. Sci.,3, pp. 311–350.MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    S.P. Marin (1982), “Computing Scattering Amplitudes for Arbitrary Cylinders Under Incident Plane Waves”,IEEE Trans. Antennas and Propagat.,AP-30, pp. 1045–1049.CrossRefGoogle Scholar
  20. 20.
    C.I. Goldstein (1982), “A Finite Element Method for Solving Helmholtz Type Equations in Wave Guides and Other Unbounded Domains”,Math. Comp.,39, pp. 309–324.MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Bayliss, C.I. Goldstein and E. Turkel (1985), “The Numerical Solution of the Helmholtz Equation for Wave Propagation Problems in Underwater Acoustics”,Comp. and Math. with Appl.,11, pp. 655–665.MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    C. Canuto, S.I. Hariharan and L. Lustman (1985), “Spectral Methods for Exterior Elliptic Problems”,Numer. Math.,46, pp. 505–520.MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Feng Kang (1983), “Finite Element Method and Natural Boundary Reduction”,Proc. of the International Congress of Mathematicians, Warsaw, pp. 1439–1453.Google Scholar
  24. 24.
    Feng Kang (1984), “Asymptotic Radiation Conditions for Reduced Wave Equation”,J. of Computational Math. (published in China),2, 130–138.MATHGoogle Scholar
  25. 25.
    M. Masmoudi (1987), “Numerical Solution of Exterior Problems”,Numer. Math.,51, pp. 87–101.MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Lenoir and A. Tounsi (1988), “The Localized Finite Element Method and Its Application to the 2D Sea-Keeping Problem”,SIAM J. Num. Anal.,25, pp. 729–752.MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    S.W. Marcus (1991), “A Generalized Impedance Method for Application of the Parabolic Approximation to Underwater Acoustics”,J. Acoust. Soc. Am.,90, pp. 391–398.CrossRefGoogle Scholar
  28. 28.
    S.W. Marcus (1992), “A Hybrid (Finite Difference-Surface Green's Function) Method for Computing Transmission Losses in an Inhomogeneous Atmosphere Over Irregular Terrain”,IEEE Trans. Antennas and Propag.,40, pp. 1451–1458.CrossRefGoogle Scholar
  29. 29.
    M. Verriere and M. Lenoir (1992), “Computation of Waves Generated by Submarine Landslides”,Int. J. Num. Meth. Fluids,14, pp. 403–421.MATHCrossRefGoogle Scholar
  30. 30.
    G.N. Gatica and G.C. Hsiao (1992), “The Coupling of Boundary Integral and Finite Element Methods for Nonmonotone Nonlinear Problems”,Numer. Func. Anal. Optim.,13, pp. 431–447.MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    G.N. Gatica and G.C. Hsiao (1992), “On The Coupled BEM and FEM for a Nonlinear Exterior Dirichlet Problem in R2Numer. Math.,61, pp. 171–214.MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Araya, Rodolfo A.; Gatica, Gabriel N.; Mennickent, Hubert (1996), “Boundary-field equation method for a nonlinear exterior elasticity problem in the plane”,Journal of Elasticity,43, pp. 45–68.MATHMathSciNetGoogle Scholar
  33. 33.
    D. Givoli (1990), “Finite Element Analysis of Long Cylindrical Shells”,AIAA Journal,28, pp. 1331–1333.Google Scholar
  34. 34.
    D. Givoli (1990), “A Combined Analytic-Finite Element Method for Elastic Shells”,Int. J. of Solids and Structures,26, pp. 185–198.MATHCrossRefGoogle Scholar
  35. 35.
    D. Givoli and J.B. Keller (1990), “Non-Reflecting Boundary Conditions for Elastic Waves”,Wave Motion,12, pp. 261–279.MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    D. Givoli and S. Vigdergauz (1993), “Artificial Boundary Conditions for 2D Problems in Geophysics”,Comput. Meth. Appl. Mech. Engng.,110, pp. 87–101.MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    I. Patlashenko and D. Givoli (1997), “Non-Reflecting Finite Element Schemes for Three-Dimensional Acoustic Waves”,J. Computational Acoustics,5, pp. 95–115.CrossRefGoogle Scholar
  38. 38.
    I. Harari, I. Patlashenko and D. Givoli (1998), “DtN Maps for Unbounded Wave Guides”,J. Computational Physics,143, pp. 200–223.MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    G. Ben-Porat and D. Givoli (1995), “Solution of Unbounded Domain Problems Using Elliptic Artificial Boundaries”,Commun. Num. Meth. Engng.,11, pp. 735–741.MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    M.J. Grote and J.B. Keller (1995), “On Nonreflecting Boundary Conditions”,J. Comput. Phys.,122, pp. 231–243.MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    K.G. Ayappa, H.T. Davis, E.A. Davis and J. Gordon (1992), “Two-Dimensional Finite Element Analysis of Microwave Heating”,AIChE J.,38, pp. 1577–1590.CrossRefGoogle Scholar
  42. 42.
    G.N. Gatica and M.E. Mellado (1998), “On the Numerical Solution of Linear Exterior Problems via the Uncoupling Method”,Int. J. Numer. Meth. Engng.,41, pp. 233–251.MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    M. Malhotra and P. Pinsky (1996), “Matrix-free interpretation of the non-local Dirichlet-to-Neumann radiation boundary condition”,Int. J. Numer. Meth. Engng.,39, pp. 3705–3713.MATHCrossRefGoogle Scholar
  44. 44.
    I. Harari and T.J.R. Hughes (1992), “A Cost Comparison of Boundary Element and Finite Element Methods for Problems of Time-Harmonic Acoustics”,Comput. Meth. Appl. Mech. Engng.,97, pp. 77–102.MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    D. Givoli, I. Patlashenko and J.B. Keller (1997), “High order Boundary Conditions and Finite Elements for Infinite Domains”,Comput. Meth. Appl. Mech. Engng.,143, pp. 13–39.MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    I. Harari and T.J.R. Hughes (1992), “Galerkin/Least-squares Finite Element Methods for the Reduced Wave Equation with Non-reflecting Boundary Conditions in Unbounded Domains”,Comput. Meth. Appl. Mech. Engng.,98, pp. 411–454.MATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    D. Givoli (1989), “Finite Element Analysis of Heat Problems in Unbounded Domains”, inNumerical Methods In Thermal Problems, Volume VI, R.W. Lewis and K. Morgan, eds., pp. 1094–1104, Pineridge Press, Swansca, U.K.Google Scholar
  48. 48.
    D. Goldman and P.E. Barbone (1996), “Dirichlet to Neumann maps for the representation of equipment with weak nonlinearities”, in Proc. 1996 ASME Winter Annual Meeting, Atlanta, GA, USA, Nov. 96, ASME Noise Control and Acoustics Division, 22, 1996, New York, NY, pp. 71–76.Google Scholar
  49. 49.
    P.E. Barbone (1995), “Equipment Representations for Shock Calculations: Time Domain Dirichlet to Neumann Maps”, Tech. Report No. AM-95-012, Boston University, Boston, MA, April.Google Scholar
  50. 50.
    D. Givoli (1992), “A Numerical Solution Procedure for Exterior Wave Problems”,Computers and Structures,43, pp. 77–84.MATHCrossRefGoogle Scholar
  51. 51.
    D. Givoli (1992), “A Spatially Exact Non-Reflecting Boundary Condition for Time Dependent Problems”,Comput. Meth. Appl. Mech. Engng.,95, pp. 97–113.MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    L. Sierevogel (1997),Time-Domain Calculations of Ship Motions, PhD Thesis, Delft Technical University, Delft, The Netherlands.Google Scholar
  53. 53.
    L.L. Thompson and P.M. Pinsky (1993), “New space-time finite element methods for fluid-structure interaction in exterior domains”, in Proc. of the 1993 ASME Winter Annual Meeting, New Orleans, LA, USA Nov. 1993, Computational Methods for Fluid/Structure Interaction, American Society of Mechanical Engineers, Applied Mechanics Division, AMD 178, ASME, New York, NY, 1993, pp. 101–120.Google Scholar
  54. 54.
    L.L. Thompson and P.M. Pinsky (1996), “Space-time finite element method for structural acoustics in infinite domains. Part 2: exact time-dependent non-reflecting boundary conditions”,Comput. Meth. Appl. Mech. Engng.,132, pp. 229–258.MathSciNetCrossRefGoogle Scholar
  55. 55.
    R.E. Kleinman and G.F. Roach (1974), “Boundary Integral Equations for the Three Dimensional Helmholtz Equation”,SIAM Review,16, pp. 214–236.MATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    I. Harari and T.J.R. Hughes (1992), “Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains”,Comput. Meth. Appl. Mech. Engng.,97, pp. 103–124.MATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    I. Harari and T.J.R. Hughes (1994), “Studies of domain-based formulations for computing exterior problems of acoustics”,Int. J. Num. Meth. Engng.,37, pp. 2935–2950.MATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    I. Harari, K. Grosh, T.J.R. Hughes, M. Malhotra, P.M. Pinsky, J.R. Stewart and L.L. Thompson (1996), “Recent Developments in Finite Element Methods for Structural Acoustics”,Archives Comput. Meth. Engng.,3, pp. 131–309.MathSciNetCrossRefGoogle Scholar
  59. 59.
    I. Harari and Z. Shohet (1998), “On non-reflecting boundary conditions in unbounded elastic solids”,Comput. Meth. Appl. Mech. Engng.,163, pp. 123–139.MATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    D.S. Burnett (1994), “A Three-Dimensional Acoustic Infinite Element Based on a Prolate Spheroidal Multipole Expansion”,J. Acoust. Soc. Am.,96, pp. 2798–2816.MathSciNetCrossRefGoogle Scholar
  61. 61.
    A.S. Deakin and J.R. Dryden (1995), “Numerically Derived Boundary Conditions on Artificial Boundaries”,J. Comput. and. Applied Math.,58, pp. 1–16.MATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    D. Givoli, I. Patlashenko and J.B. Keller (1998), “Discrete Dirichlet-to-Neumann Maps for Unbounded Domains”,Comput. Meth. Appl. Mech. Engng.,164, pp. 173–185.MATHMathSciNetCrossRefGoogle Scholar
  63. 63.
    R.J. Astley (1996), “FE Mode-Matching Schemes for the Exterior Helmholtz Problem and Their Relationship to the FE-DtN Approach”,Common. Num. Meth. Engng.,12, pp. 257–267.MATHCrossRefGoogle Scholar
  64. 64.
    A.S. Deakin and H. Rasmussen (1996), “Sparse Boundary Conditions on Artificial Boundaries for Three-Dimensional Potential Problems”,J. Comput. Phys.,129, pp. 111–120.MATHCrossRefGoogle Scholar
  65. 65.
    A.A. Oberai, M. Malhotra and P.M. Pinsky (1998), “On the Implementation of the DtN Radiation Condition for Iterative Solution of the Helmholtz Equation”,Appl. Num. Math.,27, pp. 443–464.MATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    M. Malhotra and P.M. Pinsky, “Parallel Preconditioning Based onh-Hierarchical Finite Elements with Application to Acoustics”,Comput. Meth. Appl. Mech. Engng., submitted.Google Scholar
  67. 67.
    R.F. Susan-Resiga and H.M. Atassi, “A Domain Decomposition Method for the Exterior Helmholtz Problem”, J. Comput. Phys., to appear.Google Scholar
  68. 68.
    I. Patlashenko and D. Givoli (1998), “A Numerical Method for Problems in Infinite Strips with Irregularities Extending to Infinity”,Numerical Methods for PDEs,14, pp. 233–249.MATHMathSciNetGoogle Scholar
  69. 69.
    Hughes, Thomas J.R. (1995), “Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods”,Comput. Meth. Appl. Mech. Engng.,127, pp. 387–401.MATHCrossRefGoogle Scholar
  70. 70.
    J.R. Stewart and T.J.R. Hughes (1997), “h-Adaptive Finite Element Computation of Time-Harmonic Exterior Acoustics Problems in Two Dimensions”,Comput. Meth. Appl. Mech. Engng.,146, pp. 65–89.MATHMathSciNetCrossRefGoogle Scholar
  71. 71.
    I. Harari, P.E. Barbone and J.M. Montgomery (1997), “Finite element formulations for exterior problems: Application to hybrid methods, non-reflecting boundary conditions, and infinite elements”,Int. J. Num. Meth. Engng.,40, pp. 2791–2805.MATHMathSciNetCrossRefGoogle Scholar
  72. 73.
    R. A. Uras, C. T. Chang, Y. Chen and W. K. Liu (1997), “Multiresolution Reproducing Kernel Particle Methods in Acoustics”,J. Computational Acoustics,5, pp. 71–94.CrossRefGoogle Scholar
  73. 73.
    W. K. Liu, W. Hao, Y. Chen, S. Jun and J. Gosz (1997), “Multiresolution Reproducing Kernel Particle Methods”,Computational Mechanics,20, pp. 295–309.MATHMathSciNetCrossRefGoogle Scholar
  74. 74.
    W. K. Liu, Y. Chen, C. T. Chang and T. Belytschko (1996), “Advances in Multiple Scale Kernel Particle Methods”,Computational Mechanics,18, pp. 73–111.MATHMathSciNetCrossRefGoogle Scholar
  75. 75.
    W. K. Liu, Y. Chen, R. A. Uras and C. T. Chang (1996), “Generalized Multiple Scale Reproducing Kernel Particle Methods”,Comput. Meth. Appl. Mech. Engng.,139, pp. 91–158.MATHMathSciNetCrossRefGoogle Scholar
  76. 76.
    W. K. Liu, Y. Chen, S. Jun, J. S. Chen, T. Belytschko, C. Pan, R. A. Uras and C. T. Chang (1996), “Overview and Applications of the Reproducing Kernel Particle Methods”,Archives Comput. Meth. Engng.,3, pp. 3–80.MathSciNetGoogle Scholar
  77. 77.
    B. Engquist and A. Majda (1981), “Numerical Radiation Boundary Conditions for Unsteady Transonic Flow”,J. Comp. Phys.,40, pp. 91–103.MATHMathSciNetCrossRefGoogle Scholar
  78. 78.
    Thomas and M.D. Salas (1986), “Far Field Boundary Conditions for Transonic Lifting Solutions to the Euler Equations”,AIAA J.,24, pp. 1074–1080.CrossRefGoogle Scholar
  79. 79.
    T. Hagstrom and S.I. Hariharan (1988), “Accurate Boundary Conditions for Exterior Problems in Gas Dynamics”,Math. Comput.,51, pp. 581–97.MATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    W.-S. Don and D. Gottlieb (1990), “Spectral Simulations of an Unsteady Compressible Flow Past a Circular Cylinder”,Comp. Meth. Appl. Mech. Engng.,80, pp. 39–58.MATHMathSciNetCrossRefGoogle Scholar
  81. 81.
    S. Abarbanel, W.-S. Don, D. Gottlieb, D.H. Rudy and J.C. Townsend (1991), “Secondary Frequencies in the Wake of a Circular Cylinder with Vortex Shedding”,J. Fluid Mech.,225, pp. 557–574.MATHCrossRefGoogle Scholar
  82. 82.
    A. Verhoff and D. Stookesberry (1992), “Second-Order Far-Field Computational Boundary Conditions for Inviscid Duct Flow Problems”,AIAA J.,30, pp. 1268–1276.MATHGoogle Scholar
  83. 83.
    T. Hagstrom (1991), “Conditions at the Downstream Boundary for Simulations of Viscous, Incompressible Flow”,SIAM J. Sci. Stat. Comp.,12, pp. 843–858.MATHMathSciNetCrossRefGoogle Scholar
  84. 84.
    R.A. Pearson (1974), “Consistent Boundary Conditions for the Numerical Models of Systems That Admit Dispersive Waves”,J. Atmos. Sci.,31, pp. 1418–1489.CrossRefGoogle Scholar
  85. 85.
    L. Halpern and M. Schatzman (1989), “Artificial Boundary Conditions for Viscous Incompressible Flows”,SIAM J. Math. Anal.,20, pp. 308–353.MATHMathSciNetCrossRefGoogle Scholar
  86. 86.
    G. Jin and M. Braza (1993), “A Nonreflecting Outlet Boundary Condition for Incompressible Unsteady Navier-Stokes Calculations”,J. Comput. Phys.,107, pp. 239–253.MATHCrossRefGoogle Scholar
  87. 87.
    J.S. Danowitz, S.A. Abarbanel and E. Turkel (1995), “A Far-Field Non-Reflecting Boundary Condition for Two-Dimensional Wake Flows”, ICASE Rep. 95-63, NASA Langley, Hampton, VAGoogle Scholar
  88. 88.
    G.W. Hedstrom (1979), “Nonreflecting Boundary Conditions for Nonlinear Hyperbolic Systems”,J. Comp. Phys.,30, pp. 222–237.MATHMathSciNetCrossRefGoogle Scholar
  89. 89.
    K.W. Thompson (1987), “Time Dependent Boundary Conditions for Hyperbolic Systems”,J. Comp. Phys.,68, pp. 1–24.MATHCrossRefGoogle Scholar
  90. 90.
    B. Gustafsson (1988), “Far-field Boundary Conditions for Time-Dependent Hyperbolic Systems”,SIAM J. Sci. Stat. Comput.,9, pp. 812–828.MATHMathSciNetCrossRefGoogle Scholar
  91. 91.
    K.W. Thompson (1990), “Time Dependent Boundary Conditions for Hyperbolic Systems, II”,J. Comp. Phys.,89, pp. 439–461.MATHCrossRefGoogle Scholar
  92. 92.
    S. Karmi (1996), “Far-field Filtering Operators for Suppression of Reflections from Artificial Boundaries”,SIAM J. Numer. Anal.,33, pp. 1014–1047.MathSciNetCrossRefGoogle Scholar
  93. 93.
    D. Givoli and I. Patlashenko (1998), “Finite Element Schemes for Nonlinear Problems in Infinite Domains”,Int. J. Numer. Meth. Engng.,42, pp. 341–360.MATHMathSciNetCrossRefGoogle Scholar
  94. 94.
    P.J. Davis and P. Rabinowitz (1984),Methods of Numerical Integration, 2nd ed., Academic Press, New York.MATHGoogle Scholar
  95. 95.
    M. Van Dyke (1975),Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford CA.MATHGoogle Scholar
  96. 96.
    T. Hagstrom (1987), “Boundary Conditions at Outflow for a Problem with Transport and Diffusion”,J. Comp. Phys.,69, pp. 69–80.MATHMathSciNetCrossRefGoogle Scholar
  97. 97.
    S. Buonincontri and T. Hagstrom (1989), “Multidimensional Traveling Wave Solutions to Reaction-Diffusion Equations”,IMA J. Appl. Math.,43, pp. 261–271.MATHMathSciNetCrossRefGoogle Scholar
  98. 98.
    T. Hagstrom (1991), “Asymptotic Boundary Conditions for Dissipative Waves: General Theory”,Math. Comput.,56, pp. 589–606.MATHMathSciNetCrossRefGoogle Scholar
  99. 99.
    C.M. Bender and S.A. Orszag (1978),Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York.MATHGoogle Scholar
  100. 100.
    G.B. Whitham (1974),Linear and Nonlinear Waves, Wiley, New York.MATHGoogle Scholar
  101. 101.
    T.W. Wright, ed. (1986),Nonlinear Wave Propagation in Mechanics, ASME Publications, New York.Google Scholar
  102. 102.
    L.A. Segel (1987),Mathematics Applied to Continuum Mechanics, Dover, New York.Google Scholar
  103. 103.
    D. Givoli and I. Patlashenko (1998), “Finite Element Solution of Nonlinear Time-Dependent Exterior Wave Problems”,J. Comput. Phys.,143, pp. 241–258.MATHMathSciNetCrossRefGoogle Scholar
  104. 104.
    W.A. Strauss (1989),Nonlinear Wave Equations, American Mathematical Society, Providence, RI.MATHGoogle Scholar
  105. 105.
    R. Courant and D. Hilbert (1962),Methods of Mathematical Physics, Volume II, Wiley, New York.MATHGoogle Scholar
  106. 106.
    D. Givoli and I. Patlashenko (1998), “Optimal Local Non-Reflecting Boundary Conditions”,Applied Numerical Mathematics,27, pp. 367–384.MATHMathSciNetCrossRefGoogle Scholar
  107. 107.
    I. Patlashenko and D. Givoli (1996), “Nonlocal and Local Artificial Boundary Conditions for Two-dimensional Flow in an Infinite Channel”,Int. J. Numerical Methods for Heat and Fluid Flow,6, pp. 47–62.MATHCrossRefGoogle Scholar
  108. 108.
    L. Demkowicz and F. Ihlenburg (1996), “Analysis of Coupled Finite-Infinite Element Method for Exterior Helmholtz Problems”, TICAM Report 96-52, University of Texas, Austin, Nov.Google Scholar
  109. 109.
    D. Givoli (1997), “A Family of Matrix Problems”, Problems and Solutions,SIAM Review,39, p. 514.Google Scholar
  110. 110.
    A. Sidi (1998), “A Family of Matrix Problems: Solution”, Problems and Solutions,SIAM Review,40, pp. 719–723.Google Scholar
  111. 111.
    D. Givoli, I. Patlashenko and A. Sidi (1998), “A Hierarchy of Non-Reflecting Boundary Conditions and Finite Elements”, Proc. 4th Int. Conf. on Spectral and High Order Methods (ICOSA-HOM 98), Tel Aviv, Israel, June.Google Scholar
  112. 112.
    A. Sidi and D. Givoli, “Stability and Accuracy of Optimal Local Non-Reflecting Boundary Conditions”,Appl. Num. Math., submitted.Google Scholar
  113. 113.
    G. Strang and G. J. Fix (1973),An Analysis of the Finite Element Method, Prentice-Hall, New Jersey.MATHGoogle Scholar
  114. 114.
    D. Givoli and J.B. Keller (1994), “Special Finite Elements for use with High-order Boundary Conditions”,Comput. Meth. Appl. Mech. Engng.,119, pp. 199–213.MATHMathSciNetCrossRefGoogle Scholar
  115. 115.
    T.L. Geers (1998), “Computational Methods for Unbounded Domains: Benchmark Problems”, in Proc. IUTAM Symposium on Computational Methods for Unbounded Domains, Boulder, CO, USA, 1997, Kluwer Academic Publishers, to appear.Google Scholar

Copyright information

© CIMNE 1999

Authors and Affiliations

  • D. Givoli
    • 1
  1. 1.Department of Aerospace EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations