Advertisement

Glass Physics and Chemistry

, 26:169 | Cite as

The Long-term strength of optical fibers under conditions of ageing of the material

  • V. M. Pestrikov
Article
  • 25 Downloads

Abstract

The long-term cracking resistance of an optical fiber has been studied in terms of the nonlinear fracture mechanics. The ageing of the material due to internal and external factors such as humidity and temperature is taken into account. Based on the experimental data, the deformation of an optical fiber is described by the Volterra second-kind integral operators. The theoretical approach proposed is in good agreement with the experimental data and allows one to reliably predict the service life of an optical fiber under operating conditions from the results of a reference experiment on the long-term strength.

Keywords

Stress Intensity Factor Optical Fiber Glass Physic Crack Model Rheological Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Piterskikh, S.E., Optical Fibers for the Modern Fiber Optics Transmission System (FOTS),Vestn. Svyazi, 1998, no. 7, pp. 38–41.Google Scholar
  2. 2.
    Pestrikov, V.M., Piterskikh, S.E., Gavrilov, D.A., Mikelev, A.I., and Pinchuk, A.V., On the Estimation of the Influence of Different-Type Defects on the Strength of Optical Fibers,Opticheskie sistemy svyazi. Trudy II nauchno-tekhnicheskoi konferentsii (Proc. II Scientific and Technical Conf. “Optical Communication Systems”), Vladimir, 1991, pp. 220–223.Google Scholar
  3. 3.
    Zhurkov, S.N., Influence of Adsorption on the Strength of Thin Silica Fibers,Zh.Eksp. Teor. Fit, 1931, vol. 1, no. 4, pp. 189–193.Google Scholar
  4. 4.
    Zhurkov, S.N. and Aleksandrov, A.P.,Yavleniya khrupkogo razryva (The Brittle Fracture Phenomena), Leningrad: GTTI, 1933.Google Scholar
  5. 5.
    Orowan, E., The Fatigue under Stress,Nature (London), 1944, vol. 154, no. 3906, pp. 341–343.CrossRefGoogle Scholar
  6. 6.
    Mikhal’ske, T.A. and Banker, B.K., The Glass Failure,V mire nauki (In the World of Science), 1988, no. 2, pp. 62–69.Google Scholar
  7. 7.
    Gurney, C., Sources of Weaknessin Glass,Proc. R. Soc., Sen A, 1964, vol. 282, no. 1388, pp. 24–33, inMekhanicheskie svoistva novykh materialov (Mechanical Properties of New Materials), Barenblatt, G.I., Ed., Moscow: Mir, 1966, pp. 46–62.CrossRefGoogle Scholar
  8. 8.
    Pukh, V.P.,Prochnost’i razrushenie stekla (Strength and Failure of a Glass), Leningrad: Nauka, 1973.Google Scholar
  9. 9.
    Pestrikov, V.M., The Fracture of Optical Fibers with Respect to Temporal Factors,Mekhanizmy deformatsii i razrusheniya perspektivnykh materialov. Trudy XXXV seminara “Aktual’nye problemy prochnosti,” (Mechanisms of Deformation and Failure of Promising Materials: Proc. XXXV Workshop “Topical Problems of Strength”) Pskov, 1999, pp. 106–111.Google Scholar
  10. 10.
    Bukhtiarova, T.V, D’yachenko, A.A., Inozemtsev, V.P., and Sokolov, A.V., Strength and Durability of Optical Fiber Waveguides,Itogi Nauki Tekh., Ser.: Svyaz., Moscow: VINITI, 1991, vol. 8, pp. 110–169.Google Scholar
  11. 11.
    Phani, K.K., Strength of Long Optical Glass Fibers,J. Appl. Phys., 1987, vol. 62, no. 2, pp. 719–720.CrossRefGoogle Scholar
  12. 12.
    Wiederhorn, S.M., Crack Growth as an Interpretation of Static Fatigue,J. Non-Cryst. Solids, 1975, vol. 19, no. 1, pp. 169–181.CrossRefGoogle Scholar
  13. 13.
    Hilling, W.B., The Origins of Low Strength and the Ultimate Strength of Amorphous Materials,Prochnost’ stekla (The Strength of a Glass), Stepanov, V.A., Ed., Moscow: Mir, 1969, pp. 68–120.Google Scholar
  14. 14.
    Bolotin, V.V.,Stasticheskie melody v stroitel’noi mekhanike (Stochastic Methods in Building Mechanics), Moscow: Gosudarstvennoe izdatel’stvo literatury po stroitel’stvu, arkhitekture i stroitel’nym materialam, 1961.Google Scholar
  15. 15.
    Fizicheskaya entsiklopediya (Physical Encyclopedia), Prokhorov, A.M., Ed., Moscow: Bol’shaya Rossiiskaya Entsiklopediya, 1994, vol. 4, pp. 679–681.Google Scholar
  16. 16.
    Solntsev, S.S. and Morozov, E.M.,Razrushenie stekla (The Failure of a Glass), Moscow: Mashinostroenie, 1978.Google Scholar
  17. 17.
    Stepkov, V.M., Cracking Resistance and the Kinetics of Fracture of Cylindrical Glass Shells,Abstract of Cand. Sci. Dissertation, Inst. of Problems of Strength, Kiev, 1985.Google Scholar
  18. 18.
    Stepkov, V.M. and Volkov, G.S., Determination of the Limiting Pressure for Glass Pipes on the Basis of Cracking Resistance Characteristics,Steklo Keram., 1986, no. 4, pp. 15–16.Google Scholar
  19. 19.
    Griffith, A.A., The Phenomena of Rupture and Flow in Solids,Philos. Trans. R. Soc. A, 1921, vol. 221, no. 2, pp. 163–198.CrossRefGoogle Scholar
  20. 20.
    Pestrikov, V.M., On Some Regularities of the Deformation and Long-Term Cracking Resistance of Viscoelastic Materials under Conditions of Natural Ageing,Izv. Akad. Nauk, Sen Mekh. Tverd. Tela, 1998, no. 5, pp. 137–145.Google Scholar
  21. 21.
    Bessonov, M.I. and Kuvshinskii, E.V., On the Specific Features of Cracks in Solid Polymers,Fiz. Tverd. Tela (Leningrad), 1961, vol. 3, no. 2, pp. 607–610.Google Scholar
  22. 22.
    Entov, V.M. and Salaganik, R.L., On the Cracks in Viscoelastic Materials,Inzh. Zh. Mekh. Tverd. Tela, 1968, no. 2, pp. 88–94.Google Scholar
  23. 23.
    Morozov, E.M., The Variational Principle in Fracture Mechanics,Dokl. Akad. Nauk SSSR, 1969, vol. 184, no. 6, pp. 1308–1311.Google Scholar
  24. 24.
    Morozov, E.M., On the Correspondence between Energy Fracture Criterion and Mathematical Simulation of the Deformation Phenomena at the End of Sections (Cracks),Prikl. Mat. Mekh., 1970, no. 4, pp. 768–777.Google Scholar
  25. 25.
    Pestrikov, V.M., On the Criteria for Failure of Viscoelastic Solids under Conditions of Natural Materials Ageing,Izv. Akad. Nauk, Ser. Mekh. Tverd. Tela, 1999, no. 3, pp. 86–96.Google Scholar
  26. 26.
    Pestrikov, V.M., On the Fundamental Relations for Ageing Materials with Consideration of Proceeding Physicochemical Processes,Izv. Akad. Nauk, Ser. Mekh. Tverd. Tela, 1999, no. 4, pp. 134–140.Google Scholar
  27. 27.
    Bartenev, G.M. and Sanditov, D.S.,Relaksatsionnye protsessy v stekloobraznykh sistemakh (Relaxation Processes in the Vitreous Systems), Novosibirsk: Nauka, 1986.Google Scholar
  28. 28.
    Aslanova, M.S., Influence of Adsorption-Active Medium on the Strength of Glass Fibers,Dokl. Akad. Nauk SSSR, 1954, vol. 95, no. 6, pp. 1215–1218.Google Scholar
  29. 29.
    Morley, J., Strong Fibers and Fiber-Reinforced Metals,Proc. R. Soc., Ser. A, 1964, vol. 282, no. 1388, pp. 43–52; inMekhanicheskie svoistva novykh materialov (Mechanical Properties of New Materials), Barenblatt, G.I., Ed., Moscow: Mir, 1968, pp. 80–92.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • V. M. Pestrikov
    • 1
  1. 1.St. Petersburg Technological University of Plant PolymersSt. PetersburgRussia

Personalised recommendations