International Journal of Primatology

, Volume 4, Issue 4, pp 427–444 | Cite as

Differences in molar wear gradient between adult macaques and langurs

  • Mark F. Teaford


Interspecific differences in the amount and form of molar wear in nonhuman primates are only beginning to be documented and understood. The purpose of this study was to look at the wear gradient between M1 and M2 in a sample of macaques and langurs to determine if differences in wear gradient could be related to differences in diet. A skeletal collection of wild shot Macaca fascicularis, Presbytis cristata, and Presbytis rubicunda from the Museum of Comparative Zoology at Harvard University was examined using photogrammetric techniques. X, Y, and Z coordinates were used to compute areas of dentin exposure on the buccal occlusal surfaces of M1 and M2. The relationship between these variables was examined using Bartlett’s three-group method and least-squares regression. Interspecific comparisons of the resultant y intercepts indicate that (I) M. fascicularis (as compared with P. cristata or P.) has more dentin exposed on M1 when there is none exposed on M2, and (2) P. cristata (as compared with P. rubicunda) has more dentin exposed on M1 when there is none exposed on M2. Factors that might be responsible for these differences are (a) differences in dentin/enamel structure, (b) differences in molar eruption timing, and (c) differences in behavior. An unusual intercusp sequence of dentin exposure in the langurs makes precise interpretations difficult. However, at the present time, behavioral differences among the species deserve further consideration as a cause of the observed differences in molar wear gradient.

Key words

langurs macaques molar wear photogrammetrics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auskaps, A. M., and Shaw, J. H. 1957). Studies on the dentition of the cynomologous monkey.J. Dent. Res. 36:432–436.PubMedGoogle Scholar
  2. Berkson, G. (1968). Weight and tooth development during the first year inMacaca irus.Lab. Anim. Care 18: 352–355.PubMedGoogle Scholar
  3. Bernstein, I. S. (1968). The lutong of Kuala Selangor.Behaviour 32:1–16.Google Scholar
  4. Bowen, W. H., and Koch, G. (1970). Determination of age of monkeys(Macaca irus) on the basis of dental development.Lab. Anim. 4:113–123.PubMedCrossRefGoogle Scholar
  5. Bramblett, C. A. (1969). Non-metric skeletal age changes in the Darajani baboon.Am. J. phys. Anthropol. 30:161–172.CrossRefGoogle Scholar
  6. Butler, P. M. (1973). Molar wear facets of early Tertiary North American primates. In Montagna, Z. W., and Zingeser, M. R. (eds.),Symposium of the Fourth International Congress of Primatology, Vol. 3, Karger, Basel, pp. 1–27.Google Scholar
  7. Clutton-Brock, T. H. (1975). Feeding behaviour of red colobus and black and white colobus in East Africa.Folia primatol. 23:165–207.PubMedCrossRefGoogle Scholar
  8. Cohen, B., and Bowen, W. H. (1966). Dental caries in experimental animals. A pilot study.Br.Dent. J.121:269–276.PubMedGoogle Scholar
  9. Colyer, F. (1936).Variations and Diseases of the Teeth of Animals, John Bale, Sons and Danielsson, London.Google Scholar
  10. Creel, N. (1980). Stereometrics in primate taxonomy and phytogeny.Proc. Soc. Photo-Optic. Instr. Engin. 166: 338–345.Google Scholar
  11. Davies, T. G. H., and Pedersen, P. O. (1955). The degree of attrition of the deciduous teeth and first permanent molars of primitive and urbanised Greenland natives.Br. Dent. J. 99: 35–43.Google Scholar
  12. Delson, E. (1973).Fossil Colobine Monkeys of the Circum-Mediterranean Region and the Evolutionary History of the Cercopithecidae (Primates, Mammalia), Ph.D. dissertation, Columbia University, New York.Google Scholar
  13. Foldyna, J. (1957). Use of stereoplotter STD-2 in paleontology for the morphological evaluation of fossil shells.Photogramm. Engin. 23: 935–937.Google Scholar
  14. Furuya, Y. (1961-1962). The social life of the silvered leaf-monkey.Primates 3: 41–60.CrossRefGoogle Scholar
  15. Gantt, D. G. (1977).Enamel Thickness of Primate Teeth: Its Functional and Phyletic Implications, Ph.D. dissertation, Washington University, St. Louis, Mo.Google Scholar
  16. Gantt, D. G. (1979a). Comparative enamel histology of primate teeth.J. Dent. Res. 58(B): 1002–1003.PubMedGoogle Scholar
  17. Gantt, D. G. (1979b). Taxonomic implications of primate dental tissues.J. Biol. Buccale 7: 149–156.PubMedGoogle Scholar
  18. Gantt, D. G. (1979c). Patterns of dental wear and the role of the canine in Cercopithecinae.Am. J. phys. Anthropol. 51: 353–360.PubMedCrossRefGoogle Scholar
  19. Gingerich, P. D. (1972). Molar occlusion and jaw mechanics of the Eocene primateAdapis.Am. J. Phys. Anthropol. 36: 359–368.PubMedCrossRefGoogle Scholar
  20. Gingerich, P. D. (1974). Dental function in the Palaeocene primatePlesiadapis. In Martin, R. D., Doyle, G. A., and Walker, A. C. (eds.),Prosimian Biology, Duckworth, London, pp. 531–541.Google Scholar
  21. Gordon, K. D. (1980).Dental Attrition in the Chimpanzee (Pan troglodytes verus):A Scanning Electron Microscope Study, Ph.D. dissertation, Yale University, New Haven, Conn.Google Scholar
  22. Hallert, K. B. P. (1965). Photogrammetry in medicine.Photogrammetrica 20: 81–88.CrossRefGoogle Scholar
  23. Herron, R. E. (1973). Biostereometric measurements of body form.Yearbk. Phys. Anthropol. 16:80–121.Google Scholar
  24. Hertzberg, H. T. E., Dupertuis, C. W., and Emanuel, I. (1957). Stereophotogrammetry as an anthropometrie tool.Photogramm. Engin. 23: 942–947.Google Scholar
  25. Hiiemae, K. M., and Kay, R. F. (1973). Evolutionary trends in the dynamics of primate mastication. In Montagna, Z. W., and Zingeser, M. R. (eds.),Symposium of the Fourth International Congress of Primatology, Vol. 3, S. Karger, Basel, pp. 28–64.Google Scholar
  26. Hock, L. B., and Sasekumar, A. (1979). A preliminary study on the feeding biology of mangrove forest primates, Kuala Selangor.Malay. Nat. J. 33:105–112.Google Scholar
  27. Hylander, W. L. (1979a). Mandibular function inGalago crassicaudatus andMacaca fascicularis: Anin vivo approach to stress analysis.J. Morphol. 159: 253–296.PubMedCrossRefGoogle Scholar
  28. Hylander, W. L. (1979b). Functional significance of primate mandibular form.J. Morphol. 160: 223–239.PubMedCrossRefGoogle Scholar
  29. Janis, C. (1976). The evolutionary strategy of the Equidae and the origins of rumen and cecal digestion.Evolution 30: 757–774.CrossRefGoogle Scholar
  30. Kay, R. F. (1977). The evolution of molar occlusion in the Cercopithecidae and early catarrhines.Am. J. Phys. Anthropol. 46: 327–352.PubMedCrossRefGoogle Scholar
  31. Kay, R. F. (1981). The nut-crackers—a new theory of the adaptations of the ramapithecines.Am. J. Phys. Anthropol. 55: 141–151.CrossRefGoogle Scholar
  32. Kay, R. F., and Hiiemae, K. M. (1974). Jaw movement and tooth use in recent and fossil primates.Am. J. Phys. Anthropol. 40: 227–256.PubMedCrossRefGoogle Scholar
  33. LeBlanc, S. A., and Black, B. (1974). A long term trend in tooth size in the Eastern Mediterranean.Am. J. Phys. Anthropol. 41:417–422.PubMedCrossRefGoogle Scholar
  34. Lucas, P. W. (1979). The dental-dietary adaptations of mammals.N. Jb. Geol. PalÄont. Mh. 8: 486–512.Google Scholar
  35. Lucas, P. W. (1980).Adaptation and Form of the Mammalian Dentition with Special Reference to Primates and the Evolution of Man, Ph.D. dissertation, University of London, London.Google Scholar
  36. Lunt, D. A. (1978). Molar attrition in Medieval Danes. In Butler, P. M., and Joysey, K. A. (eds.),Development, Function and Evolution of Teeth, Academic Press, New York, pp. 465–482.Google Scholar
  37. Maier, W. (1977). Die Evolution der bilophodonten Molaren der Cercopithecoidea.Z. Morphol. Anthropol. 68:26–56.PubMedGoogle Scholar
  38. Maier, W., and Schneck, G. (1981). Konstruktionsmorphologische Untersuchungen am Gebiss der hominoiden Primaten.Z. Morphol. Anthropol. 72: 127–169.PubMedGoogle Scholar
  39. McCombie, F. (1957). Dental epidemiology in Malaya. I. The problem and a programme of research.J. Can. Dent. Assoc. 23: 623–632.Google Scholar
  40. McGivern, R. F., Eick, J. D., and Sorensen, S. E. (1971). Development and evaluation of a method of photogrammetry for measuring topographical changes of restorations in the mouth. InSymposium on Close-Range Photogrammetry, Urbana, Illinois, January 26–29, 1971, American Society of Photogrammetry, Falls Church, Virginia, pp. 303–329.Google Scholar
  41. Mills, J. R. E. (1973). Evolution of mastication in primates. In Montagna, Z. W., and Zingeser, M. R. (eds.),Symposium of the Fourth International Congress of Primatology, Vol. 3, S. Karger, Basel, pp. 65–81.Google Scholar
  42. Milton, K. (1978). Role of the upper canine and P2 in increasing the harvesting efficiency ofHapalemur griseus Link, 1795.J. Mammal. 59:188–190.CrossRefGoogle Scholar
  43. Miskin, E. A. (1956). The applications of photogrammetric techniques to medical problems.Photogramm. Rec. 2:92–110.CrossRefGoogle Scholar
  44. Miskin, E. A. (1960). Simple photogrammetric methods in medicine.Med. Biol. Illus. 10:230–236.PubMedGoogle Scholar
  45. Molnar, S. F. (1971). Human tooth wear, tooth function and cultural variability.Am. J. Phys. Anthropol. 34: 175–190.PubMedCrossRefGoogle Scholar
  46. Phillips-Conroy, J. E. (1978).Dental Variability in Ethiopian Baboons: An Examination of the Anubis-Hamadryas Hybrid Zone, Ph.D. dissertation, New York University, New York.Google Scholar
  47. Rose, K. D., Walker, A., and Jacobs, L. L. (1981). Function of the mandibular tooth comb in living and extinct mammals.Nature 289: 583–585.PubMedCrossRefGoogle Scholar
  48. Savara, B. S. (1965). Application of photogrammetry for quantitative study of tooth and face morphology.Am. J. Phys. Anthropol. 23:427–434.PubMedCrossRefGoogle Scholar
  49. Schultz, A. H. (1935). Eruption and decay of the permanent teeth in primates.Am. J. Phys. Anthropol. 19:489–581.CrossRefGoogle Scholar
  50. Seligsohn, D., and Szalay, F. S. (1974). Dental occlusion and the masticatory apparatus inLemur andVarecia: Their bearing on the systematics of living and fossil primates. In Martin, R. D., Doyle, G. A., and Walker, A. C. (eds.),Prosimian Biology, Duckworth, London, pp. 543–561.Google Scholar
  51. Seligsohn, D., and Szalay, F. S. (1978). Relationship between natural selection and dental morphology: Tooth function and diet inLepilemur andHapalemur. In Butler, P. M., and Joysey, K. A. (eds.),Development, Function and Evolution of Teeth, Academic Press, New York, pp. 289–308.Google Scholar
  52. Sheine, W. S. (1979). The Effects of Variations in Molar Morphology on Masticatory Effectiveness and Digestion of Cellulose in Prosimian Primates, Ph.D. dissertation, Duke University, Durham, N.C.Google Scholar
  53. Sheine, W. S., and Kay, R. F. (1977). An analysis of chewed food particle size and its relationship to molar structure in the primatesCheirogaleus medius andGalago senegalensis and the insectivoranTupaia glis.Am. J. Phys. Anthropol. 47: 15–20.CrossRefGoogle Scholar
  54. Simpson, G. G., Roe, A., and Lewontin, R. C. (1960).Quantitative Zoology, Harcourt, Brace, New York.Google Scholar
  55. Smith, P. (1969). The relation of canine size to pattern and extent of attrition in baboons.Am. J. Phys. Anthropol. 30:45–54.CrossRefGoogle Scholar
  56. Smith, P. (1972). Diet and attrition in the Natufians.Am. J. Phys. Anthropol. 37: 233–238.PubMedCrossRefGoogle Scholar
  57. Spiegel, A. (1934). Der zeitliche Ablauf der Bezahnung und des Zahnwechsels bei Javamakaken (Macaca irus mordax, Th & Wr.).Z. wiss. Zool. 145: 711–732.Google Scholar
  58. Stott, K., and Selsor, G. J. (1961). Observations of the maroon leaf monkey in North Borneo.Mammalia 25: 184–189.CrossRefGoogle Scholar
  59. Swindler, D. R. (1976).Dentition of Living Primates, Academic Press, New York.Google Scholar
  60. Teaford, M. F. (1981).Molar Wear Patterns in Macaca fascicularis, Presbytis cristatusand Presbytis rubicunda:A Photogrammetric Analysis, Ph.D. dissertation, University of Illinois, Urbana-Champaign.Google Scholar
  61. Teaford, M. F. (1982). Differences in molar wear gradient between juvenile macaques and langurs.Am. J. Phys. Anthropol. 57: 323–330.CrossRefGoogle Scholar
  62. Walker, P. L. (1978). A quantitative analysis of dental attrition rates in the Santa Barbara Channel area.Am. J. Phys. Anthropol. 48:101–106.PubMedCrossRefGoogle Scholar
  63. Wheatley, B. P. (1978a). Foraging patterns in a group of longtailed macaques in Kalimantan Timur, Indonesia. In Olivers, D. J., and Herbert, J. (eds.),Recent Advances in Primatology, Vol. 1: Behaviour, Academic Press, New York, pp. 347–349.Google Scholar
  64. Wheatley, B. P. (1978b).The Behavior and Ecology of the Crab-Eating Macaque (Macaca fascicularis)in the Kutai Nature Reserve, East Kalimantan, Indonesia, Ph.D. dissertation, University of California, Davis.Google Scholar
  65. Wheatley, B. P. (1980). Feeding and ranging of East BorneanMacaca fascicularis. In Lindburg, D. G. (ed.),The Macaques: Studies in Ecology, Behavior and Evolution, Von Nostrand Reinhold, New York, pp. 215–246.Google Scholar
  66. Zar, J. H. (1974).Biostatistical Analysis, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Mark F. Teaford
    • 1
  1. 1.Department of Cell Biology & AnatomyThe Johns Hopkins University, School of MedicineBaltimore

Personalised recommendations