Advertisement

International Journal of Primatology

, Volume 8, Issue 3, pp 261–280 | Cite as

A metric analysis ofCercopithecus aethiops dentition

  • Julius A. Kieser
  • H. T. Groeneveld
Article

Abstract

Normative adontometric data are presented on a sample of 100 adult Cercopithecus aethiops(51 male, 49 female). When correlation effects among the teeth were held constant through multivariate canonical analyses, contributions of individual tooth loci to the male-female distance were found to be similar to those isolated by univariate means. The present study fails to support Garn’s field theory of sex dimorphism. When these patterns of sexual dimorphism were contrasted with those of three other conspecific groups, the anterior teeth were found to show greater intrapopulation variation than the posterior teeth. This, together with the finding that Penrose’s shape distances between the groups were greater for anterior than postcanine teeth, provides evidence in support of Suolé’s hypothesis. The latter suggests, inter alia, that high coefficients of variation indicate a proportionately higher environmental than hereditary contribution to phenotypic variation. Negative correlations between tooth size and coefficients of variation suggest that tooth-size variability is related to size rather than occlusal complexity.

Key words

Cercopithecus aethiops odontometrics variability profiles Penrose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almquist, A. J. (1974). Sexual differences in the anterior dentition in African primates.Am. J. phys. Antrop. 40: 359–368.CrossRefGoogle Scholar
  2. Ashton, E. H., and Zuckerman, S. (1950). The influence of geographic isolation on the skull of the green monkey.Proc. zool. Soc. London B 137: 112–128.Google Scholar
  3. Cohan, F. M. (1984). Genetic divergence under natural selection.Evolution 38: 55–71.CrossRefGoogle Scholar
  4. Corruccini, R. S. (1973). Size and shape in similarity coefficients based on metric characters.Am. J. phys. Anthrop. 38: 743–754.PubMedCrossRefGoogle Scholar
  5. Garn, S. M., Kerewsky, R. S., and Swindler, D. R. (1966). Canine field in sexual dimorphism of tooth size.Nature (London) 212: 1501–1502.CrossRefGoogle Scholar
  6. Gingerich, P. D. (1974). Size variability of the teeth in living mammals and diagnosis of closely related sympatric fossil species.J. Paleont. 48: 895–903.Google Scholar
  7. Gingerich, P. D., and Schoeninger, M. J. (1979). Patterns of tooth size variability in the dentition of primates.Am. J. phys. Anthrop. 51: 457–466.PubMedCrossRefGoogle Scholar
  8. Gingerich, P. D., and Smith, B. H. (1985). Allometric scaling in the dentition of primates and insectivores. In Jungers, W. A. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 257–274.Google Scholar
  9. Gingerich, P. D., and Winkler, D. A. (1979). Patterns of variation and correlation in the dentition of the red fox (Vulpes vulpes).J. Mamm. 60: 691–704.CrossRefGoogle Scholar
  10. Jahanson, D. C. (1974). Some metric aspects of the permanent and deciduous dentition of the pygmy chimpanzee (Pan paniscus).Am. J. phys. Anthrop. 41: 39–48.CrossRefGoogle Scholar
  11. Kendall, M. G., and Stuart, A. (1966).The Advanced Theory of Statistics, Charles Griffin, London.Google Scholar
  12. Kieser, J. A., and Groeneveld, H. T. (1986). Static intraspecific allometry of jaws and teeth inCercopithecus aethiops. J. Zool. (in press).Google Scholar
  13. Klecka, W. R. (1980).Discriminant Analysis, Sage, Beverly Hills, Calif.Google Scholar
  14. Kolakowski, D., and Bailit, H. L. (1981). A differential environmental effect on human anterior tooth size.Am. J. phys. Anthrop. 54: 377–381.PubMedCrossRefGoogle Scholar
  15. Lande, R. (1977). On comparing coefficients of variation.Syst. Zool. 26: 214–217.CrossRefGoogle Scholar
  16. Lavelle, C. L. B. (1976). Odontometric study of African monkey teeth.Acta Anat. 96: 115–127.PubMedCrossRefGoogle Scholar
  17. Leary, R. F., Allendorf, F. W., and Knudsen, K. L. (1985). Inheritance of meristic variation and the evolution of developmental stability in rainbow trout.Evolution 39: 308–314.CrossRefGoogle Scholar
  18. Lerner, F. M. (1954).Genetic Homeostasis, Wiley, New York.Google Scholar
  19. Leutcnegger, W. (1971). Metric variability of the postcanine dentition in colobus monkeys.Am. J. phys. Anthrop. 35: 91–100.CrossRefGoogle Scholar
  20. Leutenegger, W. (1976). Metric variability of the anterior dentition of African colobines.Am. J. phys. Anthrop. 45: 45–52.PubMedCrossRefGoogle Scholar
  21. Mosimann, J. E. (1970). Size allometry: Size and shape variability with characteristics of the lognormal and generalized gamma distribution.J. Am. Stat. Assoc. 65: 930–945.CrossRefGoogle Scholar
  22. Orlosky, F. M., Swindler, D. R., and McCoy-Beck, H. A. (1974). Metric trends of the anterior teeth in African monkeys.Hum. Biol. 46: 647–661.PubMedGoogle Scholar
  23. Overall, J. E., and Klett, C. J. (1972).Applied Multivariate Analysis, McGraw-Hill, New York.Google Scholar
  24. Pengilly, D. (1984). Developmental versus functional explanations for patterns of variability and correlation in the dentitions of foxes.J. Mamm. 65: 34–43.CrossRefGoogle Scholar
  25. Penrose, L. S. (1954). Distance, size and shape.Ann. Eugen. 18: 337–343.PubMedGoogle Scholar
  26. Potter, R. Y., Alcazaren, A. B., Herbosa, R. M., and Tomaneng, J. (1981). Dimensional characteristics of the Filipino dentition.Am. J. phys. Anthrop. 55: 33–42.PubMedCrossRefGoogle Scholar
  27. Rothstein, S. I. (1973). The niche variation model-is it valid?Am. Nat. 107: 598–620.CrossRefGoogle Scholar
  28. Schmalhausen, I. I. (1949).Factors of Evolution. Blakiston, Philadelphia.Google Scholar
  29. Schuman, E. L., and Brace, C. L. (1955). Metric and morphological variations in the dentition of the Liberian chimpanzee.Hum. Biol. 26: 239–268.Google Scholar
  30. Sokal, R. R. (1976). The Kluge-Kerfoot phenomenon re-examined.Am. Nat. 110: 1077–1091.CrossRefGoogle Scholar
  31. Sokal, R. R., and Braumann, C. A. (1980). Significance tests for coefficients of variation and variability profiles.Syst. Zool. 29: 50–66.CrossRefGoogle Scholar
  32. Sokal, R. R., and Sneath, P. H. A. (1963).Principles of Numerical Taxonomy, W. H. Freeman, San Francisco.Google Scholar
  33. Soulé, M. E. (1982). Allometric variation. I. The theory and some consequences.Am. Nat. 120: 751–764.CrossRefGoogle Scholar
  34. Soulé, M. E., and Stewart, B. R. (1970). The “niche-variation” hypothesis: A test and alternatives.Am. Nat. 104: 85–97.CrossRefGoogle Scholar
  35. Swindler, D. R. (1976).Dentition of Living Primates, Academic Press, New York.Google Scholar
  36. Swindler, D. R., and Orlosky, F. J. (1972). Metric and morphological variability in the dentition of colobine monkeys.J. hum. Evol. 3: 135–160.CrossRefGoogle Scholar
  37. Swindler, D. R., Gaven, J. A., and Turner, W. M. (1963). Molar tooth size variability in African monkeys.Hum. Biol. 35: 104–122.PubMedGoogle Scholar
  38. Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters.Nature (London) 150: 563–565.Google Scholar
  39. Waddington, C. H. (1957).The Strategy of Genes, Macmillan, New York.Google Scholar
  40. Yablokov, A. V. (1974).Variability of Mammals, Amerind, New Delhi.Google Scholar
  41. Zingeser, M. R. (1967). Odontometric characters of the howler monkey (Alouatta caraya).J. dent. Res. suppl. I: 975–978.Google Scholar
  42. Zingeser, M. R., and Phoenix, C. H. (1978). Metric characteristics of the canine dental complex in prenatally androgenized female rhesus monkeys.Am. J. phys. Anthrop. 49: 187–192.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Julius A. Kieser
    • 1
  • H. T. Groeneveld
    • 2
  1. 1.Department of Anatomy, Medical SchoolUniversity of the WitwatersrandJohannesburg
  2. 2.Department of StatisticsUniversity of PretoriaPretoria

Personalised recommendations