Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 97, Issue 6, pp 739–751 | Cite as

Long- and short-distance contributions to the KL-KS mass difference

  • M. D. Scadron
Article
  • 33 Downloads

Summary

The long-distance hadronic contributions to the KL-KS mass difference are shown to be small based on their dominant influence upon the K weak decays. This phenomenological fact is supported by a gauge-invariant version of the electroweakSU2×U1 quark model. However, the latter model also has gauge-invariant short-distance box graph contributions which can be consistently extracted via the Gaillard-Lee vacuum saturation procedure. Together, these gauge-invariant, minimal long-distance and maximal short-distance graphs provide a realistic and accurate determination of the KL-KS mass difference.

Keywords

PACS 11.40.Ha. Partially conserved axial-vector currents PACS12.15.Ji. Applications of electroweak models to specific processes PACS 13.25. - Hadronic decays of mesons 

Вклады далеких и блиэких расстояний в раэность масс КL-КS

Реэюме

Покаэывается, что адронные вклады на далеких расстояниях в раэность масс КL-КS являются малыми иэ-эа их доминируюшего влияния на K слабые распады. Этот феноменологический факт подтверждается калибровочно-инвариантной модификацией злектрослабойSU2×U1 кварковой модели. Однако, последняя модель также кмеет калибровочно-инвариантные вклады на блиэких расстояниях, которые могут быть последовательно выделены с помошью процедуры насышения вакуума. Эти калибровочно-инвариантные минимальные для далеких расстояний и максимальные для блиэких расстояний диаграммы обеспечивают реалистическое и точное определение раэности масс KL-KS.

Riassunto

Si mostra che i contributi adronici a lunga distanza alla differenza di massa KL-KS sono piccoli in base alla loro influenza dominante sui decadimenti deboli K. Questo fatto fenomenologico è appoggiato da una versione invariante di gauge del modello a quarkSU2×U1 elettrodebole. Tuttavia, questo modello riceve anche contributi del grafico a scatola a breve distanza invarianti di gauge, che possono essere coerentemente ottenuti con il procedimento di saturazione del vuoto di Gaillard-Lee. Insieme, questi grafici invarianti di gauge a lunga distanza minimali e a breve distanza massimali forniscono una determinazione precisa e realistica della differenza di massa KL-KS.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Particle Data Group:Phys. Lett. B,170, 1 (1986).Google Scholar
  2. (2).
    J. V. Jovanovich, T. Fujii, F. Turkot, G. T. Zorn andM. Deutsch:Phys. Rev. Lett.,17, 1075 (1966).CrossRefADSGoogle Scholar
  3. (3).
    R. E. Marshak, Riazuddin andC. P. Ryan:Theory of Weak Interactions in Particle Physics (Wiley, New York, N.Y., 1969).Google Scholar
  4. (4).
    M. K. Gaillard andB. W. Lee (GL):Phys. Rev. D,10, 897 (1974).CrossRefADSGoogle Scholar
  5. (5).
    J. F. Donoghue, E. Golowich andB. R. Holstein:Phys. Lett. B,119, 412 (1982);A. Pich andE. De Rafael:Phys. Lett. B,158, 477 (1985).CrossRefADSGoogle Scholar
  6. (6).
    UA1Collaboration:Proceedings of the XXII International Conference on High Energy Physics, Leipzig, July 1984.Google Scholar
  7. (7).
    See,e.g.,L. Wolfenstein:Nucl. Phys. B,160, 501 (1979);C. T. Hill:Phys. Lett. B,97, 275 (1980).CrossRefADSGoogle Scholar
  8. (8).
    M. D. Scadron:Phys. Lett. B,95, 123 (1980);Rep. Prog. Phys.,44, 213 (1981);Nuovo Cimento A,91, 87 (1986).CrossRefADSGoogle Scholar
  9. (9).
    B. H. J. McKellar andM. D. Scadron:Phys. Rev. D,27, 157 (1983);N. H. Fuchs andM. D. Scadron:Nuovo Cimento A,93, 205 (1986).CrossRefADSGoogle Scholar
  10. (10).
    G. Eilam andM. D. Scadron:Phys. Rev. D,31, 2263 (1985).CrossRefADSGoogle Scholar
  11. (11).
    R. Delbourgo andM. D. Scadron:Lett. Nuovo Cimento,44, 193 (1985);V. Elias, G. McKeon andM. D. Scadron: University of Arizona preprint (1986).CrossRefGoogle Scholar
  12. (12).
    J. Cronin:Phys. Rev.,161, 1483 (1967).CrossRefADSGoogle Scholar
  13. (13).
    N. Cabibbo:Phys. Rev. Lett.,10, 53 (1963).CrossRefADSGoogle Scholar
  14. (14).
    R. Feynman andM. Gell-Mann:Phys. Rev.,109, 193 (1958);M. Gell-Mann:Phys. Rev.,111, 162 (1958);Y. Nambu:Phys. Rev. Lett.,4, 380 (1960).MathSciNetCrossRefADSMATHGoogle Scholar
  15. (15).
    B. Guberina, A. Pich andE. De Rafael:Phys. Lett. B,163, 198 (1985).CrossRefADSGoogle Scholar
  16. (16).
    S. Glashow, J. Iliopoulos andL. Maiani (GIM):Phys. Rev. D,2, 1285 (1970).CrossRefADSGoogle Scholar
  17. (17).
    A. Pich, B. Guberina andE. De Rafael:Nucl. Phys. B,277, 197 (1986).CrossRefADSGoogle Scholar
  18. (18).
    A. De Rujula, H. Georgi andS. Glashow:Phys. Rev. D,12, 147 (1975);N. Isgur:Phys. Rev. D,12, 3770 (1975).CrossRefADSGoogle Scholar
  19. (19).
    H. F. Jones andM. D. Scadron:Nucl. Phys. B,155, 409 (1979);H. Genz:Acta Phys. Austriaca, Suppl.,21, 559 (1979);M. D. Scadron:Phys. Rev. D,29, 2076 (1984).CrossRefADSGoogle Scholar
  20. (20).
    N. Cabibbo:Phys. Rev. Lett.,12, 62 (1964);M. Gell-Mann:Phys. Rev. Lett.,12, 155 (1964).MathSciNetCrossRefADSMATHGoogle Scholar
  21. (21).
    M. R. Pennington:Phys. Lett. B,153, 439 (1985), and references therein.CrossRefADSGoogle Scholar
  22. (22).
    M. Kobayashi andT. Mashkawa (KM):Prog. Theor. Phys.,49, 652 (1973).CrossRefADSGoogle Scholar
  23. (23).
    F. J. Gilman andM. B. Wise:Phys. Lett. B,93, 129 (1980); also seeL. L. Chau:Phys. Rep.,95, 1 (1983).CrossRefADSGoogle Scholar
  24. (24).
    K. Kleinknecht andB. Renk:Z. Phys. C,20, 67 (1983).ADSGoogle Scholar
  25. (25).
    M. K. Gaillard andB. W. Lee:Phys. Rev. Lett.,33, 108 (1974);M. A. Shifman, A. I. Vainshtein andV. I. Zakharov:Nucl. Phys. B,120, 316 (1977).CrossRefADSGoogle Scholar
  26. (26).
    M. D. Scadron:Ann. Phys. (N.Y.),148, 257 (1983);V. Elias andM. D. Scadron:Phys. Rev. D,30, 647 (1984);V. Elias, M. D. Scadron andR. Tarrach:Phys. Lett. B,162, 176 (1985).CrossRefADSGoogle Scholar
  27. (27).
    N. H. Fuchs andM. D. Scadron:J. Phys. G,11, 299 (1985).CrossRefADSGoogle Scholar
  28. (28).
    M. D. Scadron andL. R. Thebaud:Phys. Rev. D,8, 2190 (1973);M. D. Scadron andM. Visinescu:Phys. Rev. D,28, 1117 (1983);M. P. Khanna, R. C. Verma andM. D. Scadron:J. Phys. G,12, 1323 (1986).CrossRefADSGoogle Scholar
  29. (29).
    C. Schmid:Phys. Lett. B,66, 353 (1977);Riazzuddin andFayyazuddin:Phys. Rev. D,18, 1578 (1978); (E)19, 1630 (1978).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1987

Authors and Affiliations

  • M. D. Scadron
    • 1
  1. 1.Physics DepartmentUniversity of ArizonaTucson

Personalised recommendations