Il Nuovo Cimento A (1965-1970)

, Volume 29, Issue 4, pp 509–547 | Cite as

Density fluctuations in nuclear matter

  • F. Calogero
  • O. Ragnisco
  • F. Palumbo


Variational computations of the binding energy per particle for various models of nuclear matter are reported. The main purpose is to compare the results corresponding to a «semi-crystallic» structure characterized by correlated density fluctuations of the four spin-isospin nucleon types, with those corresponding to the standard «Fermi gas» homogeneous and isotropic nuclear-matter structure. It is found that, in some cases, the semicrystallic configuration yields more overall attraction (actually less overall repulsion) than the Fermi-gas case, already at (mean) nuclear densities equal to the central density of ordinary (heavy) nuclei. This effect becomes more pronounced at higher (mean) nuclear densities; it can, in most cases, be attributed, at least in part, to the tensor component of the nuclear interaction, that averages to zero in the Fermi-gas case, and yields instead an attractive contribution in configurations with appropriately correlated density fluctuations of the four spin-isospin nucleon states. All computations are based on realistic one-boson exchange nucleon-nucleon potentials. The correlations associated with the strongly repulsive character of the nucleon-nucleon interaction at short range have not been properly accounted for. The results of this paper have therefore no immediate phenomenological implications; whether the effect displayed here is preserved when the repulsive core of the nucleon-nucleon interaction is properly taken into account (both in the computations with and without density fluctuations) remains an open question.

Флуктуации плотности в ядерном вешестве


Приводятся реэультаты вариационных вычислений знергии свяэи наодну частицу для раэличных моделей ядерного вешества. Основная цель работы -сравнить реэультаты, соответствуюшие «полукристаллическ ой» структуре, харак-териэуемой соответствуюшими флчктуациями плотности четырех типов спин-иэоспиновых нуклонных состояний, с реэультатами, соответствуюшими стандартнойструкту ре «Ферми-гаэа» для однородного и иэотропного ядерного вешества. Получается, что в некоторых случаях полукристаллическая конфугурация даетбольщее суммарное притяжение (фактически, меньщее суммарное отталкивание), чем в случае Ферми-гаэа, уже при (средних) ядерных плотностях, равных центральнойплотнос ти обычных (тяжелых) ядер. Этот зффект становится более выраженнымпри больщих (средних) ядерных плотностях. В больщинстве случаев зто можетбыть приписано, по крайней мере частично, тенэорной компонентой ядерного вэаи-модействия, которая в среднем равна нулю в случае Ферми-гаэа, а в рассматриваемомслу чае дает вклад притяжения в конфигурациях с коррелированными соответст-вуюшим обраэом фликтуациями плотности для четырех спин-иэоспиновых нуклонныхсостояний. Все проведенные вычисления баэируются на реалистических нуклон-нуклонных потенциалах с обменом одним боэоном.


In questo lavoro si riferiscono i risultati di calcoli di tipo variazionale per diversi modelli di materia nucleare. Lo scopo principale è il confronto dei risultati corrispondenti ad una struttura « semicristallina » caratterizzata da fluttuazioni di densità correlate dei quattro stati di spin e isopin nucleonici, con quelli correspondenti alla struttura standard a « gas di Fermi », omogenea e isotropa. Si trova che, in alcuni casi, la configurazione semicristallina fornisce complessivamente più attrazione (o meglio meno repulsione) del caso a gas di Fermi, già a densità (media) pari alla densità centrale dei nuclei (pesanti). Questo effetto diventa più marcato a densità (medie) più alte; può, nella maggioranza dei casi, essere attribuito, almeno in parte, alla componente tensoriale dell’interazione nucleare, che nel caso del gas di Fermi dà un contributo nullo per effetto della isotropia spaziale, e che fornisce invece un contributo attrattivo in configurazioni con fluttuazioni di densità opportunamente correlate dei quattro stati di spin e isospin nucleonici. Tutti i calcoli sono effettuati con potenziali nucleone-nucleone realistici di tipo OBEP.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    See, for instance, the review paper byH. A. Bethe:Ann. Rev. Nucl. Sci.,21, 93 (1971).CrossRefADSGoogle Scholar
  2. (2).
    J. W. Negele:Progress in the theory of nuclear matter and its applications to finite nuclei, inProblems of Modern Nuclear Physics, Proceedings of the Second Problem Symposium on Nuclear Physics, Novosibirsk, June 1970 (Moscow, 1971), p. 238.Google Scholar
  3. (3) a).
    F. Calogero andYu. A. Simonov:Nuovo Cimento,64 B, 337 (1969);MathSciNetCrossRefADSMATHGoogle Scholar
  4. (3) b).
    F. Calogero andYu. A. Simonov:Lett. Nuovo Cimento,4, 219 (1970);CrossRefGoogle Scholar
  5. (3) c).
    F. Calogero:Nuclear forces and saturation, inProblems of Modern Nuclear Physics, Proceedings of the Second Problem Symposium on Nuclear Physics, Novosibirsk, June 1970 (Moscow, 1971), p. 102;Google Scholar
  6. (3) d).
    F. Calogero andYu. A. Simonov:Phys. Rev. Lett.,25, 881 (1970);CrossRefADSGoogle Scholar
  7. (3) e).
    F. Calogero andYu. A. Simonov:Rigorous constraints that nuclear forces must satisfy to be consistent with the saturation property of nuclear binding energy, inThe Nuclear Many-Body Problem, Proceedings of the Symposium on Present Status and Novel Developments in the Nuclear Many-Body Problem, Rome, September 1972, edited byF. Calogero andC. Ciofi degli Atti (Bologna, 1974), Vol. I, p. 51;Google Scholar
  8. (3) f).
    F. Calogero, Yu. A. Simonov andE. L. Surkov:Phys. Rev. C,5, 1493 (1972).CrossRefADSGoogle Scholar
  9. (4).
    E. P. Wigner:Proc. Nat. Acad. Sci.,62, 662 (1936);E. Feenberg:Phys. Rev.,42, 667 (1937);N. Kemmer:Nature,140, 192 (1937);G. Breit andE. P. Wigner:Phys. Rev.,53, 998 (1938);G. M. Volkoff:Phys. Rev.,62, 126, 134 (1942);F. Feenberg andH. Primakoff:Phys. Rev.,70, 980 (1964). For a summary, see, for instance,J. M. Blatt andV. F. Weisskopf,Theoretical Nuclear Physics (New York, N. Y., 1952), Chap. III (for the rectification of a detail in this review see ref. (3e3f)).CrossRefADSGoogle Scholar
  10. (5).
    F. Calogero andF. Palumbo:Phys. Rev. C,7, 2219 (1973).CrossRefADSGoogle Scholar
  11. (6).
    F. Calogero andF. Palumbo:Lett. Nuovo Cimento,6, 663 (1973).CrossRefGoogle Scholar
  12. (7).
    A more negative conclusion about the possibility that the tensor component of the cut-off OPEP binds sufficiently to give rise to collective effects has been given byD. M. Clement:Nucl. Phys.,205 A, 398 (1973), using diagrammatic techniques. But the perturbation basis of his treatment would presumably ignore effects such as those considered in this paper, that imply a break-down of translational invariance, manifested by the onset of density modulations.CrossRefADSGoogle Scholar
  13. (8).
    The first paper suggesting explicitly an unusual structure of nuclear matter, of the general type under consideration here, was published byA. W. Overhauser:Phys. Rev. Lett.,4, 415 (1960). For a review of subsequent developments, we refer to the recent review paper byM. de Llano:Rev. Mex. Fis.,22, 75 (1973).CrossRefADSGoogle Scholar
  14. (10).
    R. L. Coldwell:Phys. Rev. D,5, 1273 (1972);D. Schiff:An estimate of the crystallization density of cold dense neutron matter, Orsay preprint LPTHE 73/8 (1973). See also the reports byJ. W. Clark, R. Tamagaki, V. Canuto, S. M. Chitre, P. J. Siemens, V. R. Pandharipande andJ. W. Negele: inThe Nuclear Many-Body Problem, Proceedings of the Symposium on Present Status and Novel Developments in the Nuclear Many-Body Problem, Rome, September 1972, edited byF. Calogero andC. Ciofi degli Atti (Bologna, 1974), Vol. II, Session IV.CrossRefADSGoogle Scholar
  15. (12).
    This equation coincides with eq. (2.7) of ref. (6) (the argumentk zF — 2q of the ϑ-function is a misprint, the correct expression being 2k zFq, as written here).CrossRefGoogle Scholar
  16. (16).
    F. Calogero andD. Levi:Phys. Rev. C,8, 83 (1973). A minus sign is missing in front of the r.h.s. of eq. (2.4c) of this paper (this misprint in no way affects the rest of the paper).CrossRefADSGoogle Scholar
  17. (18).
    T.-S. H. Lee andF. Tabakin:Nucl. Phys.,191 A, 332 (1972).CrossRefADSGoogle Scholar
  18. (19).
    For a discussion of this point see the paper byM. de Llano: ref. (8), and the literature quoted there.CrossRefGoogle Scholar
  19. (23).
    R. A. Bryan andB. L. Scott:Phys. Rev.,177, 1435 (1969).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1975

Authors and Affiliations

  • F. Calogero
    • 1
    • 2
  • O. Ragnisco
    • 1
    • 2
  • F. Palumbo
    • 3
    • 4
  1. 1.Istituto di Fisica dell’UniversiiàRoma
  2. 2.Istituto Nazionale di Fisica NucleareSezione di RomaItaly
  3. 3.Laboratori Nazionali di Frascati del CNENFrascati
  4. 4.Scuola di Perfezionamento in Fisica dell’UniversitàRoma

Personalised recommendations