Il Nuovo Cimento A (1965-1970)

, Volume 109, Issue 1, pp 31–43 | Cite as

Broken chiral symmetry in 2+1 quantum electrodynamics at finite temperature

  • P. Narayana Swamy


An extension of theT=0 theory based on the nonperturbative gauge technique is used to investigate broken chiral symmetry in standard Quantum Electrodynamics in 2+1 space at finite temperatures. We employ a simple linearizing approximation of the Dyson-Schwinger equation to show that chiral-symmetry breaking prevails for a range of temperatures. We are also able to demonstrate that the theory exhibits a transition to a massless phase at a temperature given by the infrared regulator mass. The indication of a phase transition is borne out by a detailed analysis of the solution to the approximate gap equation for the dynamical electron mass.


11.30.Qc - Spontaneous symmetry breaking 


11.30.Rd - Chiral symmetries 


12.20.Ds - Specific calculations and limits of quantum electrodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Appelquist T., Bowick M., Karabali D. andWijewardhana L.,Phys. Rev. D,33 (1986) 3704;Appelquist T.,Prog. Theor. Phys. Suppl.,85 (1985) 244.CrossRefADSGoogle Scholar
  2. [2]
    Dorey N. andMavromatos N.,Phys. Lett. B,266 (1991) 163;294 (1992) 91.CrossRefADSGoogle Scholar
  3. [3]
    For a list of references, seeKoopmans M.,Dynamical mass generation in QED3, doctoral dissertation, University of Groningen (1990).Google Scholar
  4. [4]
    Deser S., Jackiw R. andTempleton S.,Ann. Phys.,140 (1982) 372.MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    Aitchison I. andKlein-Kreisler M.,Phys. Rev. D,50 (1994) 1068.CrossRefADSGoogle Scholar
  6. [6]
    Salam A.,Phys. Rev.,130 (1963) 1287;Delbourgo R. andWest P.,J. Phys. A,10 (1977) 1049.MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    Acharya R. andNarayana Swamy P.,Phys. Rev. D,26 (1982) 2797;Nuovo Cimento A,95 (1986) 229;98 (1987) 773.CrossRefADSGoogle Scholar
  8. [8]
    Cornwall J.,Phys. Rev. D,26 (1982) 1453;King J.,Phys. Rev. D,27 (1983) 1821.CrossRefADSGoogle Scholar
  9. [9]
    Ball J. andChiu T.,Phys. Rev. D,22 (1980) 2542.CrossRefADSGoogle Scholar
  10. [10]
    Acharya R. andNarayana Swamy P.,Int. J. Mod. Phys. A,9 (1994) 861.CrossRefADSGoogle Scholar
  11. [11]
    See,e.g.,Dolan L. andJackiw R.,Phys. Rev. D,9 (1974) 3320.CrossRefADSGoogle Scholar
  12. [12]
    Maris Th., Herscovitz V. andJacob G.,Phys. Rev. Lett.,12 (1964) 313.MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    Acharya R. andNarayana Swamy P.,Nuovo Cimento A,60 (1980) 265;65 (1981) 125.CrossRefADSGoogle Scholar
  14. [14]
    See,e.g.,Tsuei C.,Newns D.,Chi C. andPatnaik P.,Phys. Rev. Lett.,65 (1990) 2724.CrossRefADSGoogle Scholar
  15. [15]
    Acharya R. andNarayana Swamy P.,Int. J. Mod. Phys. A,8 (1993) 59.CrossRefADSGoogle Scholar
  16. [16]
    Kang S. andKim J.,Phys. Rev. D,48 (1994) 915.CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  1. 1.Department of PhysicsSouthern Illinois UniversityEdwardsvilleUSA

Personalised recommendations