Il Nuovo Cimento A (1971-1996)

, Volume 33, Issue 2, pp 299–328 | Cite as

A cloud chamber triggered by the electroluminescence of its He+Xe filling mixture: a new instrument for investigating double beta-decay

  • G. M. De’ Munari
  • G. Mambriani


The features and possibilities of a « self-triggered » cloud chamber are described. The instrument is essentially an expansion cloud chamber, filled with He and Xe (Xe acts as condensable vapour), which works at nearly 150 K, and which can be triggered by the electroluminescence of its filling mixture when a ionizing event occurs within. We report the results obtained in several investigations undertaken to answer the various problems which arise when facing the design of a self-triggered cloud chamber. In particular a prototype of He+Xe cloud chamber, which operated successfully between 140 K and 165 K, is described, and several data on the electroluminescence of He+Xe mixtures are given. The features of a « self-triggered » cloud chamber are discussed considering its possibilities as an instrument for investigating the double beta-decay of136Xe.

Камера Вильсора, срабатываюшая под действием злектролюминесце нции наполняюшей смеси (He+He) → новый инструмент для исследования двойного бета-распада


Описываются особенности и воэможности « самосрабатываюшей » камеры Вильсона. Описываемый прибор представляет камеру Вильсона, наполненную Не и Хе (Хе действует как конденсируемый пар), которая работает при 150 К и которая может срабатывать под действием злектролюминесцен ции наполняюшей смеси, когда событие иониэации происходит внутри камеры. Мы приводим реэультаты, полученные в некоторых исследованиях, предпринятых для рещения раэличных проблем, которые воэникают при конструировании « самосрабатываюшей » камеры Вильсона. В частности, описывается прототип (He+Xe) камеры Вильсона, которая успещно работает в области от 140 К до 165 К. Приводятся некоторые данные по злектролюминесцен ции смеси (He+Xe). Обсуждаются особенности « самосрабатываюшей » камеры Вильсона, рассматривая ее воэможности, как инструмента для исследования двойного бета-распада136Xe.


Si illustrano le caratteristiche e le potenzialità di una camera a nebbia « autocomandata ». Lo strumento è una camera a nebbia ad espansione, riempita con una miscela di He e Xe (lo Xe è il vapore condensabile), funzionante a circa 150 K, e che può essere comandata dall’elettroluminesenza prodotta da un evento ionizzante nella miscela stessa. Si riportano i risultati ottenuti in varie ricerche fatte per dare risposta ai problemi che sorgono quando si affronta la progettazione di una camera a nebbia autocomandata. In particolare si descrive un prototipo di camera a nebbia ad He+Xe che ha dato risultati soddisfacenti tra 140 K e 165 K, e si riportano vari dati sull’elettroluminescenza delle miscele He+Xe. Le caratteristiche della camera a nebbia autocomandata sono discusse ed illustrate considerandone la possibile applicazione allo studio del decadimento beta doppio dello Xe 136.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    G. M. de’ Munari andG. Mambriani:Suppl. Nuovo Cimento,19, 314 (1961);Proposal for an experiment on double beta-decay of xenon 136, INFN-Milano, internal report (1961).Google Scholar
  2. (2).
    J. B. Birks:The Theory and Practice of Scintillation Counting (Oxford, 1964)Google Scholar
  3. (3).
    P. E. Argan, N. D’Angelo andA. Gigli:Nuovo Cimento,1, 761 (1955);P. E. Argan andA. Gigli:Nuovo Cimento,3, 1337 (1956).CrossRefGoogle Scholar
  4. (4).
    See, for instance,J. G. Wilson:The Principles of Cloud Chamber Technique (Cambridge, 1951);N. N. Das Gupta andS. K. Gosh:Rev. Mod. Phys.,18, 225 (1946).Google Scholar
  5. (5).
    M. Volmer andH. Flood:Zeits. Phys. Chem.,170, 273 (1934).Google Scholar
  6. (6).
    See, for instance,J. Frenkel:Kinetic Theory of Liquids, Chap. VII (Oxford, 1946).Google Scholar
  7. (7).
    R. Sampaolo:Un prototipo di camera di Wilson (Parma, Thesis, 1966).Google Scholar
  8. (8).
    P. Anelli:Studio del tempo di espansione di un prototipo di camera a nebbia (Parma, Thesis, 1966).Google Scholar
  9. (*).
    As far as we know, no information exists on the electron attachment on the rare-gas clusters. An indirect evidence that the electron attachment on these clusters could be negligible (if any) can be obtained from our EL measurements in rare gases at low temperatures (refer to sect.4). In fact at the considered temperatures, for instance, an appreciable concentration of clusters of Xe atoms is present (E. Buluggiu andC. Foglia:Phys. Lett.,14, 26 (1965);Nuovo Cimento,43 B, 197 (1966);Chem. Phys. Lett.,1, 82 (1967)), and then, if the attachment is important, the EL should decrease at low temperatures, while instead we observed a remarkable increase of the EL rate when lowering the temperature (at fixedN values).ADSCrossRefGoogle Scholar
  10. (9).
    G. L. Braglia, G. M. de’ Munari andG. Mambriani:Nuovo Cimento,43, 130 (1966).CrossRefGoogle Scholar
  11. (10).
    G. L. Braglia, G. M. de’ Munari, L. Gabba, F. Giusiano andG. Mambriani:Nuovo Cimento,56 B, 283 (1968).ADSCrossRefGoogle Scholar
  12. (11).
    G. M. de’ Munari, F. Giusiano andG. Mambriani: unpublished results (1966).Google Scholar
  13. (12).
    G. M. de’ Munari, F. Giusiano andG. Mambriani:Lett. Nuovo Cimento,3, 849 (1970).CrossRefGoogle Scholar
  14. (13).
    G. M. de’ Munari, L. Gabba, F. Giusiano andG. Mambriani:Lett. Nuovo Cimento,1, 607 (1971);2, 68, 527 (1971);6, 161 (1973).CrossRefGoogle Scholar
  15. (14).
    A. J. P. L. Policarpo, M. A. F. Alves, M. C. M. Dos Santos andM. J. T. Carvalho:Nucl. Instr. Meth.,102, 337 (1972);M. A. F. Alves, A. J. P. L. Policarpo andM. C. M. Dos Santos:Nucl. Instr. Meth.,111, 413 (1973);A. J. P. L. Policarpo, M. A. F. Alves, M. Salete, S. C. P. Leite andM. C. M. Dos Santos:Nucl. Instr. Meth.,118, 221 (1974).CrossRefGoogle Scholar
  16. (15).
    G. M. de’ Munari, L. Gabba, F. Giusiano andG. Mambriani:Lett. Nuovo Cimento,13, 63 (1975).CrossRefGoogle Scholar
  17. (16).
    G. M. de’ Munari, F. Giusiano andG. Mambriani: unpublished results (1967).Google Scholar
  18. (*).
    Once the measurements are corrected, even if approximately, for the variations of the PM efficiency with temperature: see for instance ref. (17).ADSCrossRefGoogle Scholar
  19. (18).
    E. Greuling andR. C. Whitten:Ann. of Phys.,11, 510 (1960).ADSCrossRefMathSciNetGoogle Scholar
  20. (19).
    E. J. Konopinski:The Theory of Beta Radioactivity, Chap. IX (Oxford, 1966).Google Scholar
  21. (20).
    S. P. Rosen andH. Primakoff: inAlpha-, Beta- and Gamma-Ray Spectroscopy, edited byK. Siegbahn, Vol.2 (Amsterdam, 1965), p. 1499.Google Scholar
  22. (21).
    E. Fiorini:Riv. Nuovo Cimento,2, 1 (1972).CrossRefMathSciNetGoogle Scholar
  23. (22).
    H. Primakoff andS. P. Rosen:Phys. Rev.,184, 1925 (1969).ADSCrossRefGoogle Scholar
  24. (23).
    R. K. Bardin, P. J. Gollon, J. D. Ullman andC. S. Wu:Phys. Lett.,26 B, 112 (1967);Nucl. Instr. Meth.,66, 1 (1968);Nucl. Phys.,158 A, 337 (1970).ADSCrossRefGoogle Scholar
  25. (24).
    E. Fiorini, A. Pullia, G. Bertolini, E. Cappellani andG. Rastelli:I.E.E.E. Nuclear Science Symposium, Nucl. Sci.,19, 135 (1972);Nuovo Cimento,13 A, 747 (1973).ADSGoogle Scholar
  26. (25).
    G. Faraone:Possibilità di riconoscimento di elettroni e positroni di bassa energia in una camera a nebbia ad alto Z in campo magnetico (Parma, Thesis, 1964).Google Scholar
  27. (26).
    J. E. Moyal:Phil. Mag.,41, 1058 (1950).CrossRefMathSciNetGoogle Scholar
  28. (*).
    Primakoff andRosen (ref. (22)H. Primakoff andS. P. Rosen: have shown that the electron-electron angular correlation greatly changes if the possible no-neutrino decay is considered to occur through a mechanism implying the effect of an isospin-3/2 nucleon resonance, instead of through the usual two-nucleon mechanism.ADSCrossRefGoogle Scholar
  29. (27).
    E. A. Guggenheim:Journ. Chem. Phys.,13, 253 (1945).ADSCrossRefGoogle Scholar
  30. (28).
    A. J. Leadbetter andH. E. Thomas:Trans. Faraday Soc.,61, 10 (1965).CrossRefGoogle Scholar
  31. (29).
    B. L. Smith, P. R. Gardner andE. H. C. Parker:Journ. Chem. Phys.,47, 1148 (1967).ADSCrossRefGoogle Scholar
  32. (30).
    G. A. Cook, Editor:Argon, Helium and the Rare Gases, Vol.1 (New York, N. Y., and London, 1961), p. 360.Google Scholar
  33. (31).
    A. Ferguson andS. J. Kennedy:Trans. Faraday Soc.,32, 1474 (1936).CrossRefGoogle Scholar
  34. (*).
    See for instance ref. (30) at the pages 151 and 360.Google Scholar
  35. (32).
    J. Marcoux:Can. Journ. Phys.,48, 244 (1970).ADSCrossRefGoogle Scholar
  36. (33).
    D. H. Bowman, R. A. Aziz andC. C. Lim:Can. Journ. Phys.,47, 267 (1969).ADSCrossRefGoogle Scholar
  37. (34).
    See, for instance,J. K. Roberts andA. R. Miller:Heat and Thermodinamics, Chap. IV and VIII (London and Glasgow, 1956).Google Scholar
  38. (*).
    See for instance ref. (30) at p. 272.Google Scholar
  39. (35).
    See, for instance,R. J. Hanson andD. Marker:Nuovo Cimento,32, 793 (1964).CrossRefGoogle Scholar
  40. (36).
    See, for instance,C. M. Davisson: inAlpha-, Beta- and Gamma Ray Spectroscopy, edited byK. Siegbahn, Vol.1 (Amsterdam, 1965), p. 54, eq. (41).Google Scholar
  41. (*).
    See for instance the tables reported in ref. (36).Google Scholar

Copyright information

© Società Italian di Fisica 1976

Authors and Affiliations

  • G. M. De’ Munari
    • 1
  • G. Mambriani
    • 1
  1. 1.Istituto di Fisica dell’UniversitàParmaItaly

Personalised recommendations