The Indian Journal of Pediatrics

, Volume 72, Issue 9, pp 777–783 | Cite as

Genetics of idiopathic nephrotic syndrome

  • Abhay N. Vats
Symposium on Pediatria Nephrology


Nephrotic syndrome (NS) is a pathological entity characterized by massive proteinuria and has diverse etiology. Although it is one of the most common renal diseases in children, the etiological factors responsible for idiopathic NS/FSGS remain largely unknown. Previous studies had implicated a variety of factors including genetic factors, although NS is generally regarded as a sporadic disease. Familial cases of NS have however been reported periodically, and both autosomal dominant and recessive forms have been identified. Studies of familial NS /FSGS have led to the discovery of several genes that are expressed in podocytes and are associated with proteinuria. These discoveries have shifted the focus from glomerular basement membrane (GBM) to recognition of the central role of podocytes in maintaining glomerular perm selectivity and pathogenesis of NS/FSGS. Associations with various genes (NPHS1, ACTN4, NPHS2, WT-1) and linkage to several chromosomal regions (such as 19q13,11q21,11q24) have been reported in patients with familial NS/FSGS.

Key words

Nephrotic syndrome Proteinuria Genetic factors Podocytes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nephrotic syndrome in children: prediction of histopathology from clinical and laboratory characteristics at time of diagnosis—a report of the International Study of Kidney Disease in Children.Kidney Int 1978; 13 : 159–165.Google Scholar
  2. 2.
    McEnery PT, Strife CF. NS in childhood. Management and treatment in patients with minimal change disease, mesangial proliferation, or focal glomerulosclerosis.Pediatr Clin North Am 1982; 29: 875–894.PubMedGoogle Scholar
  3. 3.
    Sharpies PM, Poulton J. White RH. Steroid responsive NS is more common in Asians.Arch Dis Child 1985; 60: 1014–1017.CrossRefGoogle Scholar
  4. 4.
    Gulati S, Sharma AP, Sharma RK, Gupta A. Changing trends of histopathology in childhood nephrotic syndrome.Am J Kidney Dis 1999; 34: 646–650.PubMedGoogle Scholar
  5. 5.
    Conlon PJ, Lynn KL, Winn MPet al. Spectrum of disease in familial focal and segmental glomerulosclerosis (FFSGS).Kidney Int 1999; 56: 1863–1871.PubMedCrossRefGoogle Scholar
  6. 6.
    Ichikawa I, Fogo A. Focal segmental glomerulosclerosis.Pediatr Nephrol 1996; 10: 374–391.PubMedGoogle Scholar
  7. 7.
    Eddy AA, Symons JM. Nephrotic syndrome in childhood.Lancet 2003; 362: 629–639.PubMedCrossRefGoogle Scholar
  8. 8.
    Somlo S, Mundel P. Getting a foothold in nephrotic syndrome.Nat Genet 2000; 24: 333–335.PubMedCrossRefGoogle Scholar
  9. 9.
    Winn MP. Approach to the evaluation of heritable diseases and update on familial focal segmental glomerulosclerosis.Nephrol Dial Transplant 2003; 18 [Suppl 6]: 14–20.Google Scholar
  10. 10.
    Pollak MR. The genetic basis of FSGS and steroid-resistant nephrosis.Semin Nephrol 2003; 23: 141–146.PubMedCrossRefGoogle Scholar
  11. 11.
    Kestila M, Lenkkeri U, Mannikko Met al. Positionally cloned gene for a novel glomerular protein — nephrin — is mutated in congenital nephrotic syndrome.Mol Cell 1998; 1: 575–582.PubMedCrossRefGoogle Scholar
  12. 12.
    Donoviel DB, Freed DD, Vogel Het al. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN.Mol Cell Biol 2001; 21: 4829–4836.PubMedCrossRefGoogle Scholar
  13. 13.
    Sellin L, Huber TB, Gerke Pet al. NEPH1 defines a novel family of podocin interacting proteins.FASEB J 2003; 17: 115–117.PubMedGoogle Scholar
  14. 14.
    Vats AN, Costello B, Mauer M. Glomerular structural factors in progression of congenital nephrotic syndrome.Pediatr Nephrol 2003; 18: 234–240.PubMedGoogle Scholar
  15. 15.
    Tryggvason K, Ruotsalainen V, Wartiovaara J. Discovery of the congenital nephrotic syndrome gene discloses the structure of the mysterious molecular sieve of the kidney.Int J Dev Biol 1999; 43: 445–451.PubMedGoogle Scholar
  16. 16.
    Lenkkeri U, Mannikko M, McCready P, Lamerdin J, Gribouval O, Niaudet P, Antignac C, Kashtan CE, Holmberg C, Olsen A, Kestila M, Tryggvason K. Structure of the gene for congenital nephrotic syndrome of the Finnish type (NPHS1) and characterization of mutations.Am J Hum Genet 1999; 64: 51–61.PubMedCrossRefGoogle Scholar
  17. 17.
    Koziell A, Grech V, Hussain S, Lee G, Lenkkeri U, Tryggvason K, Scambler P. Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in NS advocate a functional interrelationship in glomerular filtration.Hum Mol Genet 2002; 11: 379–388.PubMedCrossRefGoogle Scholar
  18. 18.
    Schultheiss M, Ruf RG, Mucha BE, Wiggins R, Fuchshuber A, Lichtenberger A, Hildebrandt F. No evidence for genotype/ phenotype correlation in NPHS1 and NPHS2 mutations.Pediatr Nephrol 2004; 19: 1340–1348.PubMedCrossRefGoogle Scholar
  19. 19.
    Huber TB, Simons M, Hartleben B, Sernetz L, Schmidts M, Gundlach E, Saleem MA, Walz G, Benzing T. Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains.Hum Mol Genet 2003; 12: 3397–3405.PubMedCrossRefGoogle Scholar
  20. 20.
    Boute N, Gribouval O, Roselli Set al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephritic syndrome.Nat Genet 2000; 24: 349–354.PubMedCrossRefGoogle Scholar
  21. 21.
    Roselli S, Heidet L, Sich M, Henger A, Kretzler M, Gubler MC, Antignac C. Early glomerular filtration defect and severe renal disease in podocin-deficient mice.Mol Cell Biol 2004; 24: 550–560.PubMedCrossRefGoogle Scholar
  22. 22.
    Kawachi H, Koike H, Kurihara H, Sakai T, Shimizu F. Cloning of rat homologue of podocin: expression in proteinuric states and in developing glomeruli.J Am Soc Nephrol 2003; 14: 46–56.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsukaguchi H, Sudhakar A, Le TCet al. NPHS2 mutations in late-onset focal segmental glomerulosclerosis: R229Q is a common disease-associated allele.J Clin Invest 2002; 110: 1659–1666.PubMedCrossRefGoogle Scholar
  24. 24.
    Karle SM, Uetz B, Ronner V, Glaeser L, Hildebrandt F, Fuchshuber A. Novel mutations in NPHS2 detected in both familial and sporadic steroid-resistant nephrotic syndrome.J Am Soc Nephrol 2002; 13: 388–393.PubMedGoogle Scholar
  25. 25.
    Frishberg Y, Rinat C, Megged O, Shapira E, Feinstein S, Raas-Rothschild A. Mutations in NPHS2 encoding podocin are a prevalent cause of steroid-resistant nephrotic syndrome among Israeli-Arab children.J Am Soc Nephrol 2002; 13: 400–405.PubMedGoogle Scholar
  26. 26.
    Ruf RG, Lichtenberger A, Karle SMet al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome.J Am Soc Nephrol 2004; 15: 722–732.PubMedCrossRefGoogle Scholar
  27. 27.
    Weber S, Gribouval O, Esquivel ELet al. NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence.Kidney Int 2004; 66: 571–579.PubMedCrossRefGoogle Scholar
  28. 28.
    Caridi G, Bertelli R, Carrea Aet al. Prevalence, genetics, and clinical features of patients carrying podocin mutations in steroid-resistant nonfamilial focal segmental glomerulosclerosis.J Am Soc Nephrol 2001; 12: 2742–2746.PubMedGoogle Scholar
  29. 29.
    Bertelli R, Ginevri F, Caridi Get al. Recurrence of focal segmental glomerulosclerosis after renal transplantation in patients with mutations of podocin.Am J Kidney Dis 2003; 41: 1314–1321.PubMedCrossRefGoogle Scholar
  30. 30.
    Shih NY, Li J, Karpitskii Vet al. Congenital nephrotic syndrome in mice lacking CD2-associated protein.Science 1999; 286: 312–315.PubMedCrossRefGoogle Scholar
  31. 31.
    Shaw AS, Miner JH. CD2-associated protein and the kidney.Curr Opin Nephrol Hypertens 2001; 10: 19–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Huber TB, Hartleben B, Kim Jet al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling.Mol Cell Biol 2003; 23: 4917–4928.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim JM, Wu H, Green Get al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility.Science 2003; 300: 1298–1300.PubMedCrossRefGoogle Scholar
  34. 34.
    Mathis BJ, Kim SH, Calabrese MHet al. A locus for inherited focal segmental glomerulosclerosis maps to chromosome 19ql3.Kidney Int 1998; 53: 282–286.PubMedCrossRefGoogle Scholar
  35. 35.
    Kaplan JM, Kim SH, North KNet al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis.Nature Genet 2000; 24: 251–256.PubMedCrossRefGoogle Scholar
  36. 36.
    Smoyer WE, Mundel P, Gupta A, Welsh MJ. Podocyte alphaactinin induction precedes foot process effacement in experimental nephrotic syndrome.Am J Physiol 1997; 273: F150-F157.PubMedGoogle Scholar
  37. 37.
    Kos CH, Le TC, Sinha Set al. Mice deficient in alpha-actinin-4 have severe glomerular disease.J Clin Invest 2003; 111: 1683–1690.PubMedCrossRefGoogle Scholar
  38. 38.
    Michaud JL, Lemieux LI, Dube Met al. Focal and segmental glomerulosclerosis in mice with podocyte-specific expression of mutant alpha-actinin-4.J Am Soc Nephrol 2003; 14: 1200–1211.PubMedCrossRefGoogle Scholar
  39. 39.
    Schumacher V, Schver K, Wulh E, Altrogge H, Bonzel KE, Guschmann M, Neuhaus TJ, Pollastro RM, Kuwertz-Broking E, Bulla M, Tondera AM, Mundel P, Helmchen U, Waldherr R, Weirich A, Royer-Pokora B. Spectrum of early onset nephrotic syndrome with WT1 missense mutations.Kidney Int 1998; 53: 1594–1600.PubMedCrossRefGoogle Scholar
  40. 40.
    Orloff MS, Iyengar SK, Winkler CA, Goddard KAB, Dart RA, Ahuja TSet al. Variants in the Wilms’ tumor gene are associated with focal segmental glomerulosclerosis in the African American population.Physiol Genomics 2005; 21: 212–221.PubMedCrossRefGoogle Scholar
  41. 41.
    Pelletier J, Bruening W, Kashtan CEet al Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome.Cell 1991; 67: 437–447.PubMedCrossRefGoogle Scholar
  42. 42.
    Guo JK, Menke AL, Gubler MCet al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis.Hum Mol Genet 2002; 11: 651–659.PubMedCrossRefGoogle Scholar
  43. 43.
    Barbaux S, Niaudet P, Gubler MCet al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome.Nat Genet 1997; 17: 467–470.PubMedCrossRefGoogle Scholar
  44. 44.
    Patek CE, Fleming S, Miles CG, Bellamy CO, Ladomery M, Spraggon L, Mullins J, Hastie ND, and Hooper ML. Murine Denys-Drash syndrome: evidence of podocyte dedifferentiation and systemic mediation of glomerulosclerosis.Hum Mol Genet 2003; 12: 2379–2394.PubMedCrossRefGoogle Scholar
  45. 45.
    Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis.Science 2005; 308: 1801–1804.PubMedCrossRefGoogle Scholar
  46. 46.
    Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function.Nat Genet May 27; (Epub ahead of print); 2005Google Scholar
  47. 47.
    Freichel M, Vennekens R, Olausson J, Hoffmann M, Muller C, Stolz S, Scheunemann J, Weiβgerber P, Flockerzi V. Functional role of TRPC proteins in vivo: lessons from TRPC-deficient mouse models.Biochemical and Biophysical Research Communications 2004; 322: 1352–1358.PubMedCrossRefGoogle Scholar
  48. 48.
    U. Wissenbach, B.A. Niemeyer, V. Flockerzi. TRP channels as potential drug targets.Biol Cell 2004; 96: 47–54.PubMedCrossRefGoogle Scholar
  49. 49.
    Vats A, Nayak A, Ellis D, Randhawa PS, Finegold DN, Levinson KL, Ferrell RE. Familial nephrotic syndrome: clinical spectrum and linkage to chromosome 19ql3.Kidney Int 2000; 57: 875–881.PubMedCrossRefGoogle Scholar
  50. 50.
    Ruf RG, Fuchshuber A, Karle SM, Lemainque A, Huck K, Wienker T, Otto E. Identification of the first gene locus (SSNS1) for steroid-sensitive nephrotic syndrome on chromosome 2p.J Am Soc Nephrol 2003; 14: 1897–1900PubMedCrossRefGoogle Scholar
  51. 51.
    Chung KW, Ferrell RE, Ellis D, Barmada M, Moritz M, Finegold DN, Jaffe R, Vats A. African American hypertensive nephropathy maps to a new locus on chromosome 9q31-q32.Am J Hum Genet 2003; 73: 420–429.PubMedCrossRefGoogle Scholar
  52. 52.
    Prakash S, Chung KW, Sinha S, Barmada M, Ellis D, Ferrell RE, Finegold DN, Randhawa PS, Dinda A, Vats A. Autosomal dominant progressive nephropathy with deafness: linkage to a new locus on chromosome 11q24.J Am Soc Nephrol 2003; 14: 1794–803.PubMedCrossRefGoogle Scholar

Copyright information

© Dr. K C Chaudhuri Foundation 2005

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of Pediatric Nephrology, Children’s Hospital of PittsburghUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations