Advertisement

Discrimination reversal conditioning of an eyeblink response is impaired by NMDA receptor blockade

  • J. D. Churchill
  • J. T. Green
  • S. E. Voss
  • E. Manley
  • J. E. Steinmetz
  • P. E. Garraghty
Papers

Abstract

In the present study we examined the effects of the specific NMDA receptor antagonist CPP on discrimination reversal learning in rabbits. We report two primary findings. First, the institution of NMDA receptor blockade had no effect on a learned discrimination. Second, after stimulus reversal, CPP treatment impaired acquisition of the discrimination reversal. This impairment manifested itself early in training as a retardation in acquisition of a CR to the new CS+ and late in training as an inability to suppress responsiveness to the new CS-. Given the comparability of the present results with previously published results for phenytoin-treated rabbits, we suggest that the effects of phenytoin on learning in this paradigm is at least in part mediated by its effects on NMDA receptors. We further suggest that these findings emphasize the need to better define the role of NMDA receptor activation and hippocampally-mediated circuits in a variety of associative learning paradigms.

Keywords

NMDA Receptor Unconditional Stimulus Eyeblink Conditioning Discrimination Reversal Interpositus Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahro, M., Schreurs, B. G., Sunderland, T., & Molchan, S. E. (1996). The effects of scopolamine, lorazepam, and glycopyrrolate on classical conditioning of the human eyeblink response.Psychopharmacology, 112, 395–400.Google Scholar
  2. Banks, M. K., Mohr, N. L., Bernard, E. A., Logue, S. F., Steinmetz, J. E., & Garraghty, P. E. (1995). A comparison of the effects of CPP and phenytoin on transfer from appetitive to aversive contexts in adult rats.Society for Neuroscience Abstracts, 21, 204.Google Scholar
  3. Banks, M. K., Mohr, N. L., Besheer, J., Steinmetz, J. E., & Garraghty, P. E. (1999). The effects of phenytoin on instrumental appetitive to aversive transfer in rats.Pharmacology, Biochemistry and Behavior, 63, 465–472.CrossRefGoogle Scholar
  4. Bashir, Z. I., Berretta, N., Bortolotto, Z. A., Clark, K., Davies, C. H., Frenguelli, B. G., Harvey, J., Potier, B. & Collingridge, G. L. (1994). NMDA receptors and long-term potentiation in the hippocampus. In G. L. Collingridge, & J. C. Watkins (Eds.),The NMDA receptor, 2nd edition (pp. 294–312). Oxford: Oxford Press.Google Scholar
  5. Berger, T. W., & Orr W. B. (1983). Hippocampectomy selectively disrupts discrimination reversal conditioning of the rabbit nictitating membrane response.Behavioral Brain Research, 8, 49–68.CrossRefGoogle Scholar
  6. Berger, T. W., & Thompson, R. F. (1978). Identification of pyramidal cells as the critical elements in hippocampal neuronal plasticity during learning.Proceedings of the National Academy of Sciences (USA) 75, 1572–1576.CrossRefGoogle Scholar
  7. Berger, T. W., Alger, B., & Thompson, R. F. (1976). Neuronal substrate of classical conditioning in the hippocampus.Science, 192, 483–485.PubMedCrossRefGoogle Scholar
  8. Brown, L. M., Lee, Y., & Teyler, T. J. (1994). Antiepileptics inhibit cortical N-methyl-d-aspartate-evoked [3H]norepinephrine efflux.European Journal of Pharmacology, 254, 307–309.PubMedCrossRefGoogle Scholar
  9. Buller, A. L., Larson, H. C., Schneider, B. E., Beaton, J. A., Morrisett, R. A., & Monaghan, D. T. (1994). The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition.Journal of Neuroscience, 14, 5471–5484.PubMedGoogle Scholar
  10. Chen, G., & Steinmetz, J. E. (2001). Intra-cerebellar infusions of NMDA receptor antagonist AP5 disrupts classical eyeblink conditioning in rabbits.Brain Research, in press.Google Scholar
  11. Churchill, J. D., Voss, S. E., Miller, D. P., Steinmetz, J. E., & Garraghty, P. E. (1998). Phenytoin blocks the reversal of a classically conditioned discriminative eyeblink response in rabbits.Epilepsia, 39, 584–589.PubMedCrossRefGoogle Scholar
  12. Davies, J., Evans, R. H., Herrling, P. L., Olverman, A. W., Pook, P., & Watkins, J. C. (1986). CPP, a new potent and selective NMDA antagonist. Depression of central neuron responses, affinity for [3H]D-AP5 binding sites on brain membranes and anticonvulsant activity.Brain Research, 382, 169–173.PubMedCrossRefGoogle Scholar
  13. Esplin, D. W. (1957). Effects of diphenylhydantoin on synaptic transmission in cat spinal cord and stellate ganglion.Journal of Pharmacology and Experimental Therapeutics, 120, 301–323.PubMedGoogle Scholar
  14. Gabriel, M., Kang, E., Poremba, A., Kubota, Y., Allen, M. T., Miller, D. P., & Steinmetz, J. E. (1996). Neural substrates of discriminative avoidance learning and classical eyeblink conditioning in rabbits: a double dissociation.Behavioral Brain Research, 82, 23–30.CrossRefGoogle Scholar
  15. Gould, T. J., & Steinmetz, J. E. (1994). Multiple-unit activity from rabbit cerebellar cortex and interpositus nucleus during classical discrimination/reversal eyelid conditioning.Brain Research, 652, 98–106.PubMedCrossRefGoogle Scholar
  16. Greenberg, D. A., Cooper, E. C., & Carpenter, C. L. (1984). Phenytoin interacts with calcium channels in brain membranes.Annals of Neurology, 16, 616–617.PubMedCrossRefGoogle Scholar
  17. Harris, E. W., Ganong, A. H., Monaghan, D. T., Watkins, J. C., & Cotman, C. W. (1986). Actions of 3-((+/-)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), a new highly potent antagonist of N-methyl-D-aspartate receptors in the hippocampus.Brain Research, 389, 174–177.CrossRefGoogle Scholar
  18. Harvey, J. A., Gormezano, I., & Cool-Hauser, V. A. (1983). Effects of scopolamine and methylscopolamine on classical conditioning of the rabbit nictitating membrane response.Journal of Pharmacology and Experimental Therapeutics, 225, 42–49.PubMedGoogle Scholar
  19. Leung, L. S., & Shen, B. (1993). Long-term potention in hippocampal CA1: effects of afterdischarges, NMDA antagonists, and anticonvulsants.Experimental Neurology, 119, 205–214.PubMedCrossRefGoogle Scholar
  20. Lincoln, J. S., McCormick, D. A., & Thompson, R. F. (1982). Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response.Brain Research, 242, 190–193.PubMedCrossRefGoogle Scholar
  21. McCormick, D. A., & Thompson, R. F. (1984). Cerebellum: Essential involvement in the classically conditioned eyelid response.Science, 223, 296–299.PubMedCrossRefGoogle Scholar
  22. McCormick, D. A., Clark, G. A., Lavond, D. G., & Thompson, R. F. (1982). Initial localization of the memory trace for a basic form of learning.Proceedings of the National Academy of Sciences (USA), 3, 293–299.Google Scholar
  23. Merritt, H. H., & Putnam, T. J. (1938). Sodium diphenyl hydantoinate in treatment of convulsive disorders.Journal of the American Medical Association, 111, 1068–1073.Google Scholar
  24. Miller, D. P., & Steinmetz, J. E. (1997) Hippocampal activity during classical discrimination-reversal eyeblink conditioning in rabbits.Behavioral Neuroscience, 111, 70–79.PubMedCrossRefGoogle Scholar
  25. Monaghan, D. T., & Buller, A. L. (1994). Anatomical, pharmacological, and molecular diversity of native NMDA receptor subtypes. In G. L. Collingridge, & J. C. Watkins (Eds.),The NMDA receptor, 2 nd edition (pp. 158–176) Oxford: Oxford Press.Google Scholar
  26. Moore, J. W., Goodell, N. A. & Solomon, P. R. (1976). Central cholinergic blockage by scopolamine and habituation, classical conditioning, and latent inhibition of rabbit’s nictitating membrane response.Physiological Psychology, 4, 395–399.Google Scholar
  27. Morris, R. G. M., & Davis, M. (1994). The role of NMDA receptors in learning and memory. In G. L. Collingridge, & J. C. Watkins (Eds.),The NMDA receptor, 2 nd edition (pp. 340–375). Oxford: Oxford Press.Google Scholar
  28. Robinson, G. B. (1993). MK801 retards acquisition of a classically conditioned response without affecting conditioning-related alterations in perforant path-granule cell synaptic transmission.Psychobiology, 21, 253–264.Google Scholar
  29. Schugens, M. M., Egerter, R., Daum, I., Schepelmann, K., Klockgether, T., & Löschmann, P.-A. (1997). The NMDA antagonist memantine impairs classical eyeblink conditioning in humans.Neuroscience Letters, 224, 57–60.PubMedCrossRefGoogle Scholar
  30. Servatius, R. J., & Shors, T. J. (1996). Early acquisition, but not retention, of the classically conditioned eyeblink response is N-methyl-d-aspartate (NMDA) receptor dependent.Behavioral Neuroscience, 110, 1040–1048.PubMedCrossRefGoogle Scholar
  31. Solomon, P. R., Groccia-Ellison, M., Flynn, D., Mirak, J., Edwards, K. R., Dunehew, A., & Stanton, M. E. (1993). Disruption of human eyeblink conditioning after central cholinergic blockade with scopolamine.Behavioral Neuroscience, 107, 271–279.PubMedCrossRefGoogle Scholar
  32. Solomon, P. R., Solomon, S. D., Vander Schaaf, E., & Perry, H. E. (1983). Altered activity in the hippocampus is more detrimental to classical conditioning than removing the structure.Science, 220, 329–331.PubMedCrossRefGoogle Scholar
  33. Steinmetz, J. S., Logue, S. F., & Steinmetz, S. S. (1992). Rabbit classically conditioned eyelid responses do not reappear after interpositus nucleus lesions and extensive post-lesion training.Behavioral Brain Research, 51, 103–114.CrossRefGoogle Scholar
  34. Thompson, L. T., Moyer, J. R., Akase, E., & Disterhoft, J. F. (1994). A system for quantative analysis of associative learning. Part 1. Hardware interfaces with cross-species applications.Journal of Neuroscience Methods, 54, 109–117.PubMedCrossRefGoogle Scholar
  35. Wamil, A. W., & McLean, M. J. (1993). Phenytoin blocks N-methyl-d-aspartate responses of mouse central neurons.Journal of Pharmacology and Experimental Therapeutics, 267, 218–227.PubMedGoogle Scholar
  36. Wilder, B. J., McLean, J. R., & Uthman, B. M. (1993). Phenytoin. In E. Wyllie (Ed.),The Treatment of epilepsy: Principles and practices (pp. 887–899). Philadelphia: Lea & Febiger.Google Scholar
  37. Woodbury, D. M. (1982). Phenytoin: Mechanisms of action. In D. M. Woodbury, J. K. Penry, & C. E. Pippenger (Eds.),Antiepileptic drugs (pp. 269–281) New York: Raven Press.Google Scholar
  38. Yaari, Y., Selzer, M. E., & Pincus, J. H. (1986). Phenytoin: Mechanisms of its anticonvulsant action.Annals of Neurology, 20, 171–184.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • J. D. Churchill
    • 1
    • 2
  • J. T. Green
    • 1
    • 2
  • S. E. Voss
    • 2
  • E. Manley
    • 2
  • J. E. Steinmetz
    • 1
    • 2
  • P. E. Garraghty
    • 1
    • 2
  1. 1.Program in Neural ScienceIndiana UniversityUSA
  2. 2.Department of PsychologyIndiana UniversityBloomington

Personalised recommendations