Cardiovascular and Interventional Radiology

, Volume 15, Issue 1, pp 32–42 | Cite as

Single-Shot Magnetic Resonance Imaging: Applications to Angiography

  • Adrian P. Crawley
  • Mark S. Cohen
  • E. Kent Yucel
  • Brigitte Poncelet
  • Thomas J. Brady


Recently developed technologies that allow the collection of magnetic resonance imaging (MRI) in as little as 26 msec have been explored in their application to angiography. Advantages are demonstrated in scan time reduction, insensitivity to patient motion (especially in abdominal applications), flow quantification, and temporal resolution. We demonstrate that because such single-shot techniques are inherently resistant to flow dephasing during acquisition that allow for sustained high signal intensities to be achieved when images must be combined through the cardiac cycle. Such high temporal resolution scans may be utilized for the collection of time-resolved angiograms. With these techniques we demonstrate the collection of complete MR angiograms in the course of reasonable 10–25 sec breath holds. The relative simplicity of the technique, coupled with its overall short acquisition time, allows us to incorporate angiography into other imaging protocols without adding significant time burdens. Results to date are promising for further improvements in spatial resolution, without extension of scan time.


MR angiography Instascan Echo planar imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rzedzian R (1988) Real time MR1 at 2.0 Tesla. Society for Magnetic Resonance in Medicine, p 247Google Scholar
  2. 2.
    Glover G, Pelc N (1988) A rapid gated cine MRI technique. In Kressel H (ed) Magnetic resonance annual. Raven Press. New York pp. 299–333Google Scholar
  3. 3.
    Belliveau J, Cohen M, Weisskoff R, Buchbinder B, Rosen B (1991) Functional studies of the human brain using high-speed magnetic resonance imaging. J Neuroradiol 1(1):36–41Google Scholar
  4. 4.
    Rosen B, Belliveau J, Chien D (1990) Perfusion imaging by magnetic resonance. Magn Reson Q 5(4):226–281Google Scholar
  5. 5.
    Bottomley P, Foster T, Argersinger R, Pfeiffer L (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: Dependence on tissue type. NMR frequency, temperature, species, excision and age. Medical Phy 11:425CrossRefGoogle Scholar
  6. 6.
    Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Physics C10:L55–L58Google Scholar
  7. 7.
    Rzedzian R, Pykett I (1987) Instant images of the human heart using a new, whole-body MR imaging system. Am J Roentgenol 149:245–250CrossRefGoogle Scholar
  8. 8.
    Cohen M, Weisskoff R (1991) Ultra-fast imaging. Magn Reson Imaging 9(1):1–37PubMedCrossRefGoogle Scholar
  9. 9.
    Twieg D (1983) The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods. Med Physics 10:610–621CrossRefGoogle Scholar
  10. 10.
    Rzedzian R (1987) High speed, high resolution, spin echo imaging by Mosaic scan and MESH. Soc Magn Reson Med p 51Google Scholar
  11. 11.
    Hahn E (1950) Spin echoes. Phys Rev 80(4):580–594CrossRefGoogle Scholar
  12. 12.
    Farzaneh F, Riederer S, Pelc N (1990) Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar. Magn Reson Med 14:123–139PubMedCrossRefGoogle Scholar
  13. 13.
    Haase A, Frahm J, Matthaei K (1986) FLASH imaging: Rapid NMR imaging using low flip angles.” J Magn Reson 67:258–266Google Scholar
  14. 14.
    Hahn E (1960) Detection of sea-water motion by nuclear precession. J Geophys Res 65:776–777CrossRefGoogle Scholar
  15. 15.
    Wedeen V, Meuli R, Edelman R, Frank L, Brady T, Rosen B (1985) Projective imaging of pulsatile flow with magnetic resonance. Science 230:946–948PubMedCrossRefGoogle Scholar
  16. 16.
    Dumoulin C, Souza S, Hart H (1987) Rapid scan magnetic resonance angiography. Magn Reson Med 5:238–245PubMedCrossRefGoogle Scholar
  17. 17.
    Dumoulin C, Hart H (1986) Magnetic resonance angiography. Radiology 161:717–720PubMedGoogle Scholar
  18. 18.
    Dumoulin C, Souza S, Walker M, Wagle W (1987) Three-dimensional phase contrast angiography. Magn Reson Med 9:139–149CrossRefGoogle Scholar
  19. 19.
    Moran P (1982) A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging 1: 197–203PubMedCrossRefGoogle Scholar
  20. 20.
    Nayler G, Firmin D, Longmore D (1986) Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 10:715–722PubMedCrossRefGoogle Scholar
  21. 21.
    Walker M, Souza S, Dumoulin C (1988) Quantitative flow measurement in phase contrast MR angiography. J Compu Assist Tomogr 12(2):304–313CrossRefGoogle Scholar
  22. 22.
    Hennig J, Müri M, Brunner P, Friedburg H (1988) Quantitative flow measurement with the fast Fourier flow technique. Radiology 166:237–240PubMedGoogle Scholar
  23. 23.
    Feinberg D, Mark A (1987) Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology. 163:793–799PubMedGoogle Scholar
  24. 24.
    Smith M, Tarnawski M, Padayachee T, West D, Graves M, Taylor M (1988) Measurement of time-averaged flow in the carotid arteries. Soc Magn Reson Med 179Google Scholar
  25. 25.
    Firmin D, Kilner P, Keegan J, Mohiaddin R, Longmore D (1990) The development of a subsecond flow velocity mapping technique. Soc Magn Reson Med 408Google Scholar
  26. 26.
    Firmin D, Klipstein R, Hounsfield G, Paley M, Longmore D (1989) Echo planar high resolution flow velocity mapping. Magn Reson Med 12:316–327PubMedCrossRefGoogle Scholar
  27. 27.
    Feinberg D, Jakab P (1990) Tissue perfusion in humans studied by Fourier velocity distribution, line scan, and echoplanar imaging. Magn Reson Med 16:280–293PubMedCrossRefGoogle Scholar
  28. 28.
    Waluch V, Bradley W (1984) NMR even echo rephasing in slow laminar flow. J Comput Assist Tomogr 8(4):594–598PubMedCrossRefGoogle Scholar
  29. 29.
    Laub G, Kaiser W (1988) MR angiography with gradient motion refocusing. J Comput Assist Tomogr 12(3):377–382PubMedCrossRefGoogle Scholar
  30. 30.
    Masaryk T, Modic M, Ross J, Ruggieri P, Laub G, Lenz G, Haacke E, Selman W, Wiznitzer M, Harik S (1989) Intracranial circulation: Preliminary clinical results with three-dimensional (volume) MR angiography. Radiology 171:793–799PubMedGoogle Scholar
  31. 31.
    Masaryk T, Modic M, Ruggieri P, Ross J, Laub G, Lenz G, Tkach J, Haacke E, Selman W, Harik S (1989) Three-dimensional (volume) gradient echo imaging of the carotid bifurcation: Preliminary clinical experience. Radiology 171(3):80l–806Google Scholar
  32. 32.
    Nishimura D, Macovski A, Pauly J (1986) Magnetic resonance angiography. IEEE Trans Med Imaging MI-5(3): 140–151CrossRefGoogle Scholar
  33. 33.
    Gullberg G, Wehrli F, Shimakawa A, Simons M (1987) MR vascular imaging with a fast gradient refocusing pulse sequence and reformatted images from transaxial sections. Radiology 165:241–246PubMedGoogle Scholar
  34. 34.
    Groen J, d Graaf R, v Dijk P (1988) MR angiography based on inflow. 7th Ann Meeting Soc Magn Reson Med 906Google Scholar
  35. 35.
    Saloner D, Anderson C, Lee R (1990) Thin slice MR angiography. Soc Magn Reson Imaging 345Google Scholar
  36. 36.
    Keller P, Drayer B, Fram E, Williams K, Dumoulin C, Souza S (1989) MR angiography with two-dimensional acquisition and three-dimensional display. Radiology 173(2):527–532PubMedGoogle Scholar
  37. 37.
    Edelman R, Zhao B, Liu C (1989) MR angiography and dynamic flow evaluation of the portal venous system. Am J Roentgenol 153:755–760CrossRefGoogle Scholar
  38. 38.
    Kim D, Edelman R, Kent K, Porter D, Skillman J (1990) Abdominal aorta and renal artery stenosis: Evaluation with MR angiography. Radiology 174:727–731PubMedGoogle Scholar
  39. 39.
    Weisskoff R, Crawley A, Wedeen V (1990) Flow sensitivity and flow compensation in instant imaging. Soc Magn Reson Med 398Google Scholar
  40. 40.
    Margosian P (1985) Faster MR imaging—imaging with half the data. Society for Magnetic Resonance in Medicine, p 1024Google Scholar
  41. 41.
    Bracewell R (1978) The Fourier transform and its applications. McGraw Hill, New YorkGoogle Scholar
  42. 42.
    Wedeen V, Crawley A, Weisskoff R, Holmvang G, Cohen M (1990) Real time MR imaging of structured fluid flow. Society of Magnetic Resonance in Medicine, p 164Google Scholar
  43. 43.
    Poncelet B, Wedeen V, Mikulis D, McKinstry R, Brady T (1991) Visualization of the brain motion using EPI phase mapping. Society of Magnetic Resonance ImagingGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • Adrian P. Crawley
    • 1
  • Mark S. Cohen
    • 1
  • E. Kent Yucel
    • 1
  • Brigitte Poncelet
    • 1
  • Thomas J. Brady
    • 1
  1. 1.Massachusetts General Hospital NMR CenterCharlestownUSA

Personalised recommendations