Skip to main content
Log in

Isotopic-spin conservation in allowed β-transitions and coulomb matrix elements

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

A survey has been made of all available experimental data for atomic weight >20 yielding a value for |M F|, the Fermi matrix element, in allowed transitions. Useful measurements have been made for 15 different radio-nuclides, three being ostensibly pure Fermi transitions (0+→0+), the rest being mixed. From |M F| are deduced the values of |α T (T−1)|, the absolute value of the impurity coefficient for isotopic spin (T) in state (T−1), and |〈H C〉|, the effective Coulomb matrix element. In deducing |〈H C〉| recent results on (p, n) reactions joining isobaric states in medium and heavy-weight nuclei were used in order to locate the excitation of theT-state. The findings are that there is a marked tendency for |α T (T−1)| to be ≲5·10−32≲3·10−5) and for |〈H C〉| to be ≲30 keV. Four measurements yield values higher than these limits, but in three of these alternative experimental results give values which are lower. The fourth measurement is the64Ga (0+→0+) transition which gives one of the biggest and most precise values for α T (T−1), (2.00±0.05)·10−2. However, this deduction depends on the spin assignment for64Ga, expected to be 1 from shell-model theory. A direct confirmation of the64Ga spin would clarify the situation here. The general findings described above are in good qualitative accord with the results of the survey made byWilkinson of α T (T−1) in light nuclei (A⩽20). One is led therefore to suggest that |〈H C〉| tends to be ≲30 keV in the vicinity of the ground state (≲5 MeV excitation) as a general rule for all atomic weights up to at least 134. This is in keeping with the finding from the above-mentioned (p, n) reactions that isospin is (qualitatively) well conserved forall atomic weights at low excitations (≲10 MeV).

Riassunto

Si è fatta una rassegna di tutti i dati sperimentali disponibili, per pesi atomici >20, che dànno il valore di |M F|, l’elemento di matrice di Fermi, nelle transizioni permesse. Si sono fatte utili misure in 15 diversi radionuclidi, di cui tre erano ostensibilmente pure transizioni di Fermi (0+→0+), ed il resto transizioni miste. Da |M F| si deducono i valori di |α T (T−1)|, il valore assoluto del coefficiente di impurezza per uno spin isotopico (T) nello stato (T−1), ed |〈H c〉|, l’elemento effettivo della matrice di Coulomb. Per dedurre |〈H c〉| si sono usati, per localizzare l’eccitazione dello statoT, i recenti risultati sulle reazioni (p, n) che uniscono stati isobarici nei nuclei medi e pesanti. Si trova che |α T (T−1)| ha una forte tendenza ad assumere un valore ≲5·10−32≲3·10−5) ed |〈H C〉| ad assumere un valore ≲30 keV. Quattro misure dànno valori superiori a questi limiti, ma in tre di queste altri risultati sperimentali dànno valori più bassi. La quarta misura è quella della transizione (0+→0+) del64Ga, che dà uno dei maggiori e più precisi valori di α T (T−1), (200±0.05)·10−2. Tuttavia questa deduzione dipende dall’assegnazione dello spin al64Ga, che si prevede essere 1 in base alla teoria del modello a gusci. Una conferma diretta dello spin del64Ga chiarirebbe qui la situazione. I risultati generali descritti sopra sono in buon accordo qualitativo con i risultati della rassegna fatta da Wilkinson di α T (T−1) nei nuclei leggeri (A⩽20). Si è quindi indotti a suggerire che |〈H C〉| tende ad essere ≲30 keV in prossimità dello stato fondamentale (eccitazione ≲5 MeV) come regola generale per tutti i pesi atomici sino almeno a 134. Questo concorda con il risultato delle suddette reazioni (p, n), che cioè l’isospin è (qualitativamente) ben conservato per tutti i pesi atomici alle basse eccitazioni (≲10 MeV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Mayer-Kuckuk andR. Nierhaus:Zeits. Phys.,154, 383 (1959).

    Article  ADS  Google Scholar 

  2. S. D. Bloom, L. G. Mann andJ. A. Miskel:Phys. Rev.,125, 2021 (1962);J. A. Miskel, L. G. Mann andS. D. Bloom:Phys. Rev., (to be published).

    Article  ADS  Google Scholar 

  3. F. Boehm andA. H. Wapstra:Phys. Rev.,109, 456 (1958).

    Article  ADS  Google Scholar 

  4. R. M. Steffen:Phys. Rev.,115, 980 (1959).

    Article  ADS  Google Scholar 

  5. E. L. Haase, H. A. Hill andD. B. Knudsen:Phys. Lett.,4, 338 (1963).

    Article  ADS  Google Scholar 

  6. L. G. Mann, S. D. Bloom, A. Scott, R. Polichar andJ. R. Richardson:Proceedings of the Manchester Conference on Low- and Medium-Energy Physics (September, 1963), andPhys. Rev, to be published.

  7. T. Mayer-Kuckuk, R. Nierhaus andV. Schmidt-Rohr:Zeits. Phys.,157, 586 (1960).

    Article  ADS  Google Scholar 

  8. M. Chabre andP. Depommier:Compte rendus de l’Académie des Sciences,255, 503 (1962).

    Google Scholar 

  9. A. Lundby, A. P. Patro andJ.-P. Stroot:Nuovo Cimento,10, 745 (1957).

    Article  Google Scholar 

  10. W. Jungst andH. Schopper:Zeits. Naturfors.,139, 505 (1958).

    ADS  Google Scholar 

  11. H. Daniel andM. Kuntze:Zeits. Phys.,162, 229 (1961).

    Article  ADS  Google Scholar 

  12. J. Berthier:Thesis, University of Paris, No. 4671 (1962).

  13. F. Boehm andJ. Rogers:Nucl. Phys.,33, 118 (1962).

    Article  Google Scholar 

  14. R. M. Singru andR. M. Steffen:Nucl. Phys.,43, 537 (1963).

    Article  Google Scholar 

  15. H. Daniel, O. Mehling, O. Müller, P. Schmidlin, H. Schmitt, K. S. Subudhi amdE. Neuburger:Nucl. Phys.,45, 529 (1963).

    Article  Google Scholar 

  16. A. Van Nooijen:Thesis, University of Delft (1958).

  17. L. G. Mann, S. D. Bloom andR. J. Nagel:Phys. Rev.,127, 2134 (1962).

    Article  ADS  Google Scholar 

  18. H. Daniel, M. Kuntze andO. Mehling:Zeits. Naturfors.,169, 1118 (1961).

    ADS  Google Scholar 

  19. F. Boehm: Private communication.

  20. F. Boehm:Phys. Rev.,109, 1018 (1958).

    Article  ADS  Google Scholar 

  21. H. Daniel, O. Mehling, O. Müller andK. S. Subudhi:Phys. Rev.,128, 261 (1962).

    Article  ADS  Google Scholar 

  22. E. Ambler, R. W. Hayward, D. D. Hoppes andR. P. Hudson:Phys. Rev.,110, 787 (1959).

    Article  ADS  Google Scholar 

  23. H. Postma, W. J. Huiskamp, A. R. Miedema, M. J. Steenland, H. A. Tolhoek andC. J. Goerter:Physica,24, 157 (1958). AlsoProgress in Low Temperature Physics, vol.3, (1961), p. 333;W. J. Huiscamp andH. A. Tolhoek.

    Article  ADS  Google Scholar 

  24. E. Ambler, R. W. Hayward, D. D. Hoppes andR. P. Hudson:Phys. Rev.,106, 1361 (1957).

    Article  ADS  Google Scholar 

  25. E. Ambler, R. W. Hayward, D. D. Hoppes andR. P. Hudson:Phys. Rev.,108, 503 (1957).

    Article  ADS  Google Scholar 

  26. P. Dagley, M. A. Grace, J. S. Hill andC. V. Sowter:Phil. Mag.,3, 489 (1958).

    Article  ADS  Google Scholar 

  27. H. Daniel:Ann. Phys.,7, 106 (1963).

    Article  MathSciNet  Google Scholar 

  28. W. P. Alford andJ. B. French:Phys. Rev. Lett.,6, 119 (1961).

    Article  ADS  Google Scholar 

  29. P. S. Kelly andS. A. Moszkowski:Zes.its. Phys.,158, 304 (1960).

    Article  ADS  Google Scholar 

  30. C. C. Bouchiat:Phys. Rev.,118, 540 (1960).

    Article  ADS  Google Scholar 

  31. C. C. Bouchiat:Phys. Rev.,120, 1829 (1959).

    Google Scholar 

  32. R. J. Blin-Stoyle andL. Novakovic: to be published.

  33. R. P. Feynman andM. Gell-Mann:Phys. Rev.,109, 193 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  34. E. P. Wigner:Proceedings of the R. Welch Foundation Conference on Chemical Research (November 1957) (unpublished);J. Bernstein andR. Lewis:Phis. Rev.,112, 232 (1958).

  35. D. H. Wilkinson:Proceedings of the Rehovoth Conference on Nuclear Structure (Amsterdam, 1958), p. 175. An excellent general review of isospin impurities in complex nuclei is given byW. Maconald:Nuclear Spectroscopy, B 932 (F. Ajzenberg-Selove, Editor) (1960).

  36. C. C. Bouchiat: Private communication.

  37. J. M. Freeman, J. H. Montague, D. West andR. E. White:Phys. Lett.,3, 136 (1962).

    Article  ADS  Google Scholar 

  38. T. H. Jacobi, H. A. Howe andJ. R. Richardson:Phys. Rev.,117, 1086 (1960).

    Article  ADS  Google Scholar 

  39. J. D. Anderson, C. Wong andJ. W. McClure:Phys. Rev.,129, 2718 (1963).

    Article  ADS  Google Scholar 

  40. A. M. Lane andJ. M. Soper:Nucl. Phys.,37, 663 (1962).

    Article  Google Scholar 

  41. N. V. V. J. Swamy andA. E. S. Green:Phys. Rev.,112, 1719 (1958).

    Article  ADS  Google Scholar 

  42. M. T. Burgy, V. E. Krohn, T. B. Novey, G. R. Ringo andV. L. Telegdi:Phys. Rev.,120, 1929 (1960).

    Article  ADS  Google Scholar 

  43. N. W. Glass andR. W. Peterson:Phys. Rev.,130, 299 (1963).

    Article  ADS  Google Scholar 

  44. Y. K. Lee, L. Mo andC. S. Wu:Phys. Rev. Lett.,10, 253 (1963).

    Article  ADS  Google Scholar 

  45. R. Stump andS. Frankel:Phys. Rev.,79, 728 (1950);J. R. Beyster andM. L. Wiedenbeck:Phys. Rev.,79, 728 (1950);D. T. Stevenson andM. Deutsch:Phys. Rev.,83, 1202 (1951).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloom, S.D. Isotopic-spin conservation in allowed β-transitions and coulomb matrix elements. Nuovo Cim 32, 1023–1036 (1964). https://doi.org/10.1007/BF02733868

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02733868

Navigation