Skip to main content
Log in

The FCC nuclear model

II. — Model predictions concerning nuclear radii, binding energies and excited states

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

In part I of this paper, an isomorphism was shown to exist between the known nucleon eigenvalues and the symmetries of an anti-ferromagnetic face-centred cubic (FCC) lattice of protons and neutrons. Based upon the exact correspondence between nucleon states and positions in the FCC lattice, the properties of individual nuclei can be deduced with few additional assumptions or empirical input. Here, nuclear RMS radial values and binding energies of isotopes across the periodic chart have been determined. Nuclear « skin » parameters and the excited states of selected nuclei have also been calculated and demonstrate the realistic nature of FCC model predictions. Attenuation of the periodic chart atZ<110 is predicted and a brief comparison with other solid phase nuclear models is made.

Riassunto

Nella prima parte di questo lavoro è stato dimostrato un isomorfismo tra gli autovalori dei nucleoni e le simmetrie di un reticolo FCC di protoni e neutroni. Attraverso la corrispondenza degli stati nucleonici e le posizioni del reticolo FCC, le proprietà dei nuclei si possono dedurre con un minimo di assunzioni iniziali. In questa parte sono determinati i valori dei raggi (RMS), della energia di legame, i parametri di « skin » e gli stati eccitati di vari isotopi nella tavola periodica, che dimostrano la natura realistica delle predizioni del modello FCC. Si prevede una attenuazione della tavola periodica perZ<110 e si fa un breve confronto con altre teorie che si fondano su una fase solida del nucleo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Bethe:Annu. Rev. Nucl. Sci.,21, 93 (1971);

    Article  ADS  Google Scholar 

  2. J. Aichelin andH. Stocker:Phys. Lett. B,163, 59 (1985).

    Article  ADS  Google Scholar 

  3. B. A. Brown, C. Bronk andP. E. Hodgson:J. Phys. G,10, 1683 (1984).

    Article  ADS  Google Scholar 

  4. G. E. Brown:Aust. J. Phys.,36, 591 (1983).

    Article  ADS  Google Scholar 

  5. W. A. Myers andK. H. Schmidt:Nucl. Phys. A,410, 61 (1983).

    Article  ADS  Google Scholar 

  6. J. P. Egger, R. Corfu, P. Gretillat, C. Lunke, J. Piffaretti andE. Schwarz:Phys. Rev. Lett.,39, 1608 (1977).

    Article  ADS  Google Scholar 

  7. R. J. Powers, F. Boehm, P. Vogel, A. Zehnder, T. King andA. R. Kunselman:Phys. Rev. Lett.,34, 492 (1975).

    Article  ADS  Google Scholar 

  8. G. T. Seaborg:Annu. Rev. Nucl. Sci.,18, 53 (1968);

    Article  ADS  Google Scholar 

  9. W. Stephens, J. Klein andR. Zurmuhle:Phys. Rev. C,21, 1664 (1980).

    Article  ADS  Google Scholar 

  10. D. M. Denison:Phys. Rev.,96, 378 (1954).

    Article  ADS  Google Scholar 

  11. P. S. Hauge, S. A. Williams andG. H. Duffey:Phys. Rev. C,4, 1044 (1971);

    Article  ADS  Google Scholar 

  12. E. V. Inopin, V. S. Kinchakov, V. K. Lukyanov andYu. S. Pol:Ann. Phys. (N. Y.),118, 307 (1979).

    Article  ADS  Google Scholar 

  13. W. Wefelmeier:Z. Phys.,107, 332 (1937).

    Article  ADS  Google Scholar 

  14. J. G. Wigans:Phys. Rev.,71, 379, 435 (1937).

    ADS  Google Scholar 

  15. J. H. Smith:Phys. Rev.,95, 271 (1954).

    Article  ADS  MATH  Google Scholar 

  16. L. Pauling:Science,150, 297 (1965);

    Article  ADS  Google Scholar 

  17. Nature (London),208, 174 (1965);

  18. Phys. Rev.,15, 499, 868 (1965).

  19. G. S. Anagnostatos:Can. J. Phys.,51, 998 (1973);

    Article  ADS  Google Scholar 

  20. Atomkernenergie,29, 206 (1977);

  21. Lett. Nuovo Cimento,22, 207 (1978);

  22. Lett. Nuovo Cimento,28, 573 (1980);

  23. Lett. Nuovo Cimento,29, 188 (1980).

  24. K. Lezuo:Atomkernenergie,23, 285 (1974);

    Google Scholar 

  25. Z. Naturforsch., Teil A,30, 158, 1018 (1975).

  26. M. MacGregor:Nuovo Cimento A,36, 113 (1976).

    Article  ADS  Google Scholar 

  27. D. Robson:Nucl. Phys. A,308, 381 (1978);

    Article  ADS  Google Scholar 

  28. Proc. Am. Inst. Phys.,47, 482 (1978).

  29. A. Guinier:X-Ray Diffraction (Freeman, San Francisco, Cal., 1963), p. 121;

    Google Scholar 

  30. H. P. Klug andL. E. Alexander:X-Ray Diffraction Procedures (Wiley, New York, N. Y., 1974), p. 68.

    Google Scholar 

  31. G. F. Bertsch, L. Zamich andA. Mekjian:Lect. Notes Phys.,119, 240 (1980).

    Article  ADS  Google Scholar 

  32. N. D. Cook: Atomkernen./Kerntech.,40, 51 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, N.D., Dallacasa, V. The FCC nuclear model. Nuov Cim A 97, 184–201 (1987). https://doi.org/10.1007/BF02733847

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02733847

Keowyrds

Navigation