Advertisement

Il Nuovo Cimento (1955-1965)

, Volume 31, Issue 4, pp 781–797 | Cite as

On the mobility of interstitials

  • P. Gosar
Article

Summary

A temperature-dependent Green’s functions method is used for the calculation of the mobility of interstitials. A quantum-mechanical expression forν0 in the formulaν=ν0exp [−U/kT] for the jumping frequency from one interstitial site to a neighbour one is derived. The theory avoids the concept of the transition state, used in classical theories. The interactions of interstitials with phonons are taken explicitly into account.

Riassunto

Si usa un metodo che utilizza le funzioni di Green dipendenti dalla temperatura per calcolare la mobilità degli interstiziali. Si deduce una espressione quanto-meccanica perν0 nella formulaν=ν0exp [−U/kT] per la frequenza dei solidi da un interstiziale all’altro. La teoria evita il concetto di stato di transizione, usato nelle teorie classiche. Si tiene esplicitamente conto delle interazioni degli interstiziali con i fononi.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Glasstone, K. J. Laidler andH. Eyring:The Theory of Rate Processes (New York, 1941).Google Scholar
  2. (2).
    F. Seitz:Phase Transformations in Solids (New York, 1951).Google Scholar
  3. (3).
    C. A. Wert andC. Zener:Phys. Rev.,76, 1169 (1949).ADSCrossRefGoogle Scholar
  4. (4).
    A. Seeger:Encyclopedia of Physics, vol. VII, Part 1 (Berlin, 1955).Google Scholar
  5. (5).
    H. A. Kramers:Physica,7, 284 (1940).MathSciNetADSCrossRefMATHGoogle Scholar
  6. (6).
    J. O. Hirschfelder andE. Wigner:Journ. Chem. Phys.,7, 616 (1939).ADSCrossRefGoogle Scholar
  7. (7).
    J. Bigeleisen:Journ. Chem. Phys.,17, 675 (1949).ADSCrossRefGoogle Scholar
  8. (8).
    J. Bigeleisen andM. Wolfsberg:Journ. Chem. Phys.,21, 1972 (1953);22, 1264 (1954).ADSCrossRefMATHGoogle Scholar
  9. (9).
    G. H. Vineyard:Journ. Phys. Chem. Solids,3, 121 (1957).ADSCrossRefGoogle Scholar
  10. (10).
    J. M. Ziman:Electrons and Phonons (Oxford, 1960).Google Scholar
  11. (11).
    V. L. Bonč-Brijevič iS. V. Tjablikov:Metod Funkcii Grina v Statističeskoj Mehanike (Moskva, 1961).Google Scholar
  12. (12).
    R. A. Swalin:Journ. Phys. Chem. Solids,23, 154 (1962).ADSCrossRefGoogle Scholar
  13. (13).
    E. M. Pell:Phys. Rev.,119, 1014 (1960).ADSCrossRefGoogle Scholar
  14. (14).
    C. S. Fuller andJ. C. Severiens:Phys. Rev.,96, 21 (1956).ADSCrossRefGoogle Scholar
  15. (15).
    N. Ockman andG. B. B. M. Sutherland:Proc. Roy. Soc. (London), A247, 434 (1958).ADSCrossRefGoogle Scholar
  16. (16).
    R. Peierls:Quantum Theory of Solids (Oxford, 1955).Google Scholar

Copyright information

© Società Italiana di Fisica 1964

Authors and Affiliations

  • P. Gosar
    • 1
  1. 1.Nuclear Institute « J. Stefan »Ljubljana

Personalised recommendations