Cybernetics and Systems Analysis

, Volume 35, Issue 3, pp 500–506 | Cite as

Tools for simulation of parallel computations in a system of algebraic programming

  • L. E. Matveyeva
  • A. V. Chugaenko
Software-Hardware Systems


Parallel Computation Polynomial Ideal Monitor System Coordination Model Groebner Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Letichevsky, Yu. V. Kapitonova, and S. V. Konozenko, “Computations in APS,” Theor. Comput. Sci., No. 119, 145-171 (1993).Google Scholar
  2. 2.
    B. Buchberger, (ed.), Computer Algebra: Symbolic and Algebraic computations [Russian translation], Mir, Moscow (1986).Google Scholar
  3. 3.
    A. A. Letichevskii, “Parallelization of the Buchberger algorithm,” Kibern. Sist. Anal., No. 2, 52–62 (1995).Google Scholar
  4. 4.
    D. Gelernter and N. Carriero, “Coordination languages and their significance,” Commun. ACM,35, No. 2, 97–107 (1992).CrossRefGoogle Scholar
  5. 5.
    P. Ciancarini, “Coordination languages for open system design,” in: Tech. Rep. TR-41/89, Univ. di Pisa (1989), p. 17.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • L. E. Matveyeva
  • A. V. Chugaenko

There are no affiliations available

Personalised recommendations