Cybernetics and Systems Analysis

, Volume 33, Issue 4, pp 461–467 | Cite as

Proof of David Kendall’s conjecture concerning the shape of large random polygons

  • I. N. Kovalenko


Voronoi Diagram Convex Polygon Concentric Circle Stochastic Geometry Random Line 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Okabie, B. Boots, and K. Sugihara, Spatial Tesselations, Concepts and Applications of Voronoi Diagrams, Wiley, Chichester (1995).Google Scholar
  2. 2.
    D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications, Wiley, New York (1987).MATHGoogle Scholar
  3. 3.
    R. E. Miles, “A heuristic proof of a long-standing conjecture of D. G. Kendall concerning the shapes of certain large polygons,” Adv. Appl. Prob. (SGSA), 27, 397–417 (1995).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D. G. Kendall, “Shape manifolds, procrustean metrics, and complex projective spaces,” Bull. London Math. Soc, 16, 81–121 (1984).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. E. Miles, “Random polygons determined by random lines in a plane,” Proc. Nat. Acad. Sei (USA), 52, 901–907, 1157–1160 (1964).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. E. Miles, “The various aggregates of random polygons determined by random lines in a plane,” Adv. Math., 10, 256–290 (1973).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    I. I. Gikhman and A. V. Skorokhod, An Introduction to Theory of Stochastic Processes [in Russian], Nauka, Moscow (1977).Google Scholar
  8. 8.
    T. Bonnesen, “Uber eine Verscharfung der isoperimetrischen Ungleichheit in der Ebene und auf der Kugeloberflache nebst einer Anwendung auf eine Minkowskische Ungleichheit fur konvexe Korper,” Math. Ann., 84, 216–227 (1921).CrossRefMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • I. N. Kovalenko

There are no affiliations available

Personalised recommendations