, Volume 28, Issue 5, pp 643–652 | Cite as

The relative importance of chlorophyll and colored dissolved organic matter (CDOM) to the prediction of the diffuse attenuation coefficient in shallow estuaries



The availability of underwater light is a critical factor in the growth and abundance of primary producers in shallow embayments. The goal of this study was to examine the relative importance of factors influencing light availability in this type of water body. Many simulation models of aquatic ecosystems predict light attenuation from chlorophyll or phytoplankton stock. In the three southern New England sites studied here, no useful relationship was found to exist between chlorophyll and KPAR (the diffuse attenuation coefficient of photosynthetically active radiation; Kirk 1994; Mobley 1994). In 40 of 53 cases, a regression of chlorophyll versus KPAR was not statistically significant. Variation in KPAR did demonstrate a correlation to salinity, implicating a freshwater source of light attenuating material. This was true even in a system with little freshwater inflow. Colored dissolved organic matter (CDOM) is one such terrestrial input that enters estuaries from their watersheds and can strongly influence the availability of light to aquatic primary producers. This study demonstrated that over 70% of the variability in the KPAR coefficient can be attributed to CDOM in the shallow estuaries studied. This illustrates the need for improved model formulations that include CDOM in the prediction of light attenuation in shallow coastal systems. A new equation has been developed to predict KPAR with CDOM.


Chlorophyll Phytoplankton Dissolve Organic Matter Light Attenuation Chromophoric Dissolve Organic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aksnes, D. L., K. B. Ulvestad, B. M. Balino, J. Bernsten, J. K. Egge, andE. Svendsen. 1995. Ecological modeling in coastal waters: Towards predictive physical-chemical-biological simulation models.Ophelia 41:5–36.Google Scholar
  2. Baird, M. E., S. J. Walker, B. B. Wallace, I. T. Webster, andJ. S. Parslow. 2003. The use of mechanistic descriptions of algal growth and zooplankton grazing in an estuarine eutrophication model.Estuarine Coastal and Shelf Science 56:685–695.CrossRefGoogle Scholar
  3. Blough, N. V. andR. Del Vecchio. 2002. Chromophoric DOM in the coastal environment, p. 774.In D. A. Hansell and C. A. Carlson (eds.), Biogeochemistry of Marine Dissolved Organic Matter. Elseveir Science, Amsterdam, The Netherlands.Google Scholar
  4. Brawley, J. W. 2002. Dynamic modeling of nutrient inputs and ecosystem responses in the Waquoit Bay estuarine system. University of Maryland, College Park, Maryland.Google Scholar
  5. Brawley, J. W., G. Collins, J. N. Kremer, C. Sham, andI. Valiela. 2000. A time-dependent model of nitrogen loading to estuaries from coastal watersheds.Journal of Environmental Quality 29:1448–1461.Google Scholar
  6. Bricaud, A., A. Morel, andL. Prieur. 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains.Limnology and Oceanography 26:43–53.Google Scholar
  7. Carder, K. L., R. G. Steward, G. R. Harvey, andP. B. Ortner. 1989. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll.Limnology and Oceanography 36:68–81.Google Scholar
  8. Cerco, C. F., B. Bunch, M. A. Cialone, andH. Wang. 1994. Hydrodynamics and eutrophication model study of Indian River and Rehoboth Bay, Delaware. U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi.Google Scholar
  9. Cerco, C. F. andT. M. Cole. 1994. Three-dimensional eutrophication model of Chesapeake Bay, Volume I: Main Report. U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi.Google Scholar
  10. Chang, G. C. andT. D. Dickey. 2004. Coastal ocean optical influences on solar transmission and radiant heating rate.Journal of Geophysical Research 109:C01020.CrossRefGoogle Scholar
  11. Chen, R. F. andJ. L. Bada. 1992. The fluorescence of dissolved organic matter in seawater.Marine Chemistry 37:191–221.CrossRefGoogle Scholar
  12. Chen, R. F. andG. B. Gardner. 2004. High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions.Marine Chemistry 89:103–125.CrossRefGoogle Scholar
  13. Cloern, J. E. 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries.Continental Shelf Research 7:1367–1381.CrossRefGoogle Scholar
  14. Coble, P. G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy.Marine Chemistry 51:325–346.CrossRefGoogle Scholar
  15. Coble, P. G., C. E. Del Castillo, andB. Avril. 1998. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 southwest monsoon.Deep-Sea Research Part I-Topical Studies in Oceanography 45:2195–2223.CrossRefGoogle Scholar
  16. Coble, P., C. Hu, R. W. Gould, Jr.,G. Chang, andA. M. Wood. 2004. Colored dissolved organic matter in the coastal ocean.Oceanography 17:50–59.Google Scholar
  17. Cole, B. E. 1989. Temporal and spatial patterns of phytoplankton production in Tomales Bay, California, U.S.A.Estuarine Coastal and Shelf Science 28:103–115.CrossRefGoogle Scholar
  18. Del Castillo, C. E., P. G. Coble, J. M. Morell, J. M. Lopez, andJ. E. Corredor. 1999. Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy.Marine Chemistry 66:35–51.CrossRefGoogle Scholar
  19. Del Castillo, C. E., F. Gilbes, P. G. Coble, andF. E. Muller-Karger. 2000. On the dispersal of riverine colored dissolved organic matter over the west Florida Shelf.Limnology and Oceanography 45:1425–1432.Google Scholar
  20. Del Vecchio, R. andN. V. Blough. 2004. On the origin of the optical properties of humic substances.Environmental Science and Technology 38:3885–3891.CrossRefGoogle Scholar
  21. Dennison, W. C. 1987. Effects of light on seagrass photosynthesis, growth, and depth distribution.Aquatic Botany 27:15–26.CrossRefGoogle Scholar
  22. Dennison, W. C., R. J. Orth, K. A. Moore, J. C. Stevenson, V. Carter, S. Kollar, P. W. Bergstrom, andR. A. Batiuk. 1993. Assessing water quality with submersed aquatic vegetation.BioScience 43:86–94.CrossRefGoogle Scholar
  23. Ditoro, D. M., andJ. P. Connolly. 1980. Mathematical models of water quality in large lakes. Part 2: Lake Erie. U. S. Environmental Protection Agency Environmental Research Laboratory, Duluth., Minnesota.Google Scholar
  24. Ditoro, D. M. andW. F. Matystik. 1980. Mathematical models of water quality in large lakes. Part 1: Lake Huron and Saginaw Bay. U. S. Environmental Protection Agency Environmental Research Laboratory, Duluth, Minnesota.Google Scholar
  25. Ditoro, D. M., D. J. O'Connor, andR. V. Thomann. 1971. A dynamic model of the phytoplankton population in the Sacramento-San Joaquin Delta, p. 131–180.In J. D. Hem (ed.), Nonequilibrium Systems in Natural Water Chemistry. American Chemical Society, Washington, D.C.Google Scholar
  26. Doering, P. H., C. A. Oviatt, J. H. McKenna, andL. W. Reed. 1994. Mixing behavior of dissolved organic carbon and its potential signifiance in the Pawcatuck River estuary.Estuaries 17:521–536.CrossRefGoogle Scholar
  27. Duarte, C. M.. 1991. Seagrass depth limits.Aquatic Botany 40:363–377.CrossRefGoogle Scholar
  28. Duarte, C. M.. 1995. Submerged aquatic vegetation in relation to different nutrient regimes.Ophelia 41:87–112.Google Scholar
  29. Gallegos, C. L.. 2005. Optical water quality of a blackwater river estuary: The lower St. Johns River, Florida, USA.Estuarine Coastal and Shelf Science 63:57–72.CrossRefGoogle Scholar
  30. Gallegos, C. L., andK. A. Moore. 2000. Factors contributing to water-column light attenuation, p. 35–55.In R. A. Batiuk, P. Bergstrom, M. Kemp, E. Koch, L. Murray, J. C. Stevenson, R. Bartelson, V. Carter, N. B. Rybicki, M. Landwehr, C. L. Gallegos, L. Karrh, M. Naylor, D. Wilcox, K. A. Moore, S. Ailstock, and M. Tiechberg (eds.), Chesapeake Bay Submerged Aquatic Vegetation Water Quality and Habitat-based Requirements and Restoration Targets: A Second Technical Synthesis, U.S. Environmental Protection Agency. Annapolis, Maryland.Google Scholar
  31. Gordon, H. R., andA. Y. Morel. 1983. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review. Springer-Verlag, New York.Google Scholar
  32. Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, andZ. Zhaoliang. 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences.Biogeochemistry 35:75–139.CrossRefGoogle Scholar
  33. Hydroqual. 1987. A steady-state coupled hydrodynamic/water quality model of the eutrophication and anoxia process in Chesapeake Bay. U.S. Environmental Protection Agency Chesapeake Bay Program, Mahwah, New Jersey.Google Scholar
  34. Hydroqual. 1991. Water quality modeling analysis of hypoxia in Long Island Sound. Management Committee of the Long Island Sound Estuary Study and The New England Interstate Water Pollution Control Committee, Mahwah, New Jersey.Google Scholar
  35. Hydroqual and Normandeau Associates. 1995. A water quality model for Massachusetts and Cape Cod Bays: Calibration of the Bays Eutrophication Model (BEM). Massachusetts Water Resources Authority, Bedford, New Hampshire.Google Scholar
  36. Jorgensen, S. E.. 1976. A eutrophication model for a lake.Ecological Modeling 2:147–165.CrossRefGoogle Scholar
  37. Keith, D. J., J. A. Yoder, andS. A. Freeman. 2002. Spatial and temporal distribution of coloured dissolved organic matter (CDOM) in Narragansett Bay, Rhode Island: Implications for phytoplankton in coastal waters.Estuarine Coastal and Shelf Science 55:705–717.CrossRefGoogle Scholar
  38. Kemp, W. M., W. Boynton, R. Twilley, T. Stevenson, andJ. Means. 1983. The decline of submerged vascular plants in upper Chesapeake Bay: Summary of results concerning possible causes..Marine Technology Society Journal 17:78–89.Google Scholar
  39. Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd edition. Cambridge University Press, Cambridge, Maryland.Google Scholar
  40. Kremer, J. N. andS. W. Nixon. 1978. A Coastal Marine Ecosystem: Simulation, and Analysis, p. 217.In W. D. Billings F. Golley, O. L. Lange, and J. S. Olson (eds.), Ecological Studies: Analysis and Synthesis, Volume 24. Springer-Verlag, Berlin, Germany.Google Scholar
  41. Mobley, C. D. 1994. Light and Water: Radiative Transfer in Natural Waters. Academic Press, Inc., San Diego, California.Google Scholar
  42. Moore, K. A., R. L. Wetzel, andR. J. Orth. 1997. Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L.) survival in an estuary.Journal of Experimental Marine Biology and Ecology 215:115–134.CrossRefGoogle Scholar
  43. Mopper, K. andD. J. Kieber. 2002. Photochemistry and the cycling of carbon, sulfur, nitrogen, and phosphorous, p. 774.In D. A. Hansell and C. A. Carlson (eds.), Biogeochemistry of Marine Dissolved Organic Matter. Elsevier Science, Amsterdam, The Netherlands.Google Scholar
  44. Moran, M. A., W. H. Sheldon, andR. G. Zepp. 2000. Carbon loss and optical property changes during long-term photobleaching and biological degradation of estuarine dissolved organic matter.Limnology and Oceanography 45:1254–1264.CrossRefGoogle Scholar
  45. Morel, A. Y. andL. Prieur. 1977. Analysis of variations in ocean color.Limnology and Oceanography 22:709–722.CrossRefGoogle Scholar
  46. National Academy of Sciences. 2000. Report of the Committee on Causes and Management of Coastal Eutrophication. National Academy of Sciences, Washington, D.C.Google Scholar
  47. Nelson, J. R. andS. Guarda. 1995. Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States.Journal of Geophysical Research 100:8715–8732.CrossRefGoogle Scholar
  48. Nelson, N. B., D. A. Siegel, andA. F. Michaels. 1998. Seasonal dynamics of colored dissolved material in the Sargasso Sea.Deep-Sea Research I 45:931–957.CrossRefGoogle Scholar
  49. Nieke, B., R. Reuter R. Heuermann H. Wang, M. Babins, andC. Therriault. 1997. Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (Case 2 waters).Continental Shelf Research 17:235–252.CrossRefGoogle Scholar
  50. Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns.Ophelia 41:199–219.Google Scholar
  51. Nixon, S. J., J. W. Ammermann, L. P. Atkinson, V. M. Berunsky, G. Billen, W. G. Boicourt, W. R. Boynton, T. M. Church, D. M. Ditoro, R. Elmgren, J. H. Garber, A. E. Giblin, R. A. Jahnke, N. J. P. Owens, M. E. Q. Pilson, andS. P. Seitzinger. 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean.Biogeochemistry 35:141–180.CrossRefGoogle Scholar
  52. Parsons, T. R., Y. Maita andC. M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis, 1st edition. Pergamon Press, New York.Google Scholar
  53. Pew Oceans Commission. 2003. America's, living oceans: Charting a course for sea change. Pew Oceans Commission, Arlington, Virginia.Google Scholar
  54. Prieur, L. andS. Sathyendranath. 1981. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials.Limnology and Oceanography 26:671–689.Google Scholar
  55. Riley, G. A. andS. A. M. Conover. 1956. Chemical Oceanography, p. 414.In G. A. Riley, S. A. M. Conover, G. B. Deevey, R. J. Conover, S. B. Wheatland, E. Harris, and H. L. Sanders (eds.), Oceanography of Long Island Sound, 1952–54, Volume XV. Bingham Oceanographic Laboratory, New Haven, Connecticut.Google Scholar
  56. Roesler, C., M. Perry, andK. Carder. 1989. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters.Limnology and Oceanography 34:1510–1523.Google Scholar
  57. Savchuk, O. andF. Wulff. 1993. Biogeochemical transformation of nitrogen and phosphorus: A pelagic submodel for the Baltic Sea. Systems Ecology Contributions No. 1, Stockholm University, Stockholm, Sweden.Google Scholar
  58. Savchuk, O. andF. Wulff. 1996. Biogeochemical transformations of nitrogen and phosphorus in the marine environment: Coupling hydrodynamic and hiogeochemical processes in models for the Baltic proper. Systems Ecology Contributions No. 2, Stockholm University, Stockholm, Sweden.Google Scholar
  59. Skoog, A., P. O. J. Hall, S. Hulth, N. Paxeus, M. R. v. d. Loeff, andS. Westerlund. 1996. Early diagnetic production and sediment-water exchange of fluorescent dissolved organic matter in the coastal environment.Geochimica et Cosmochimica Acta 60:3619–3629.CrossRefGoogle Scholar
  60. Soetaert, K., P. M. J. Herman, andJ. Kromkamp. 1994. Living in the twilight: Estimating net phytoplankton growth in the Westerschelde Estuary (The Netherlands) by means of an ecosystem model (MOSES).Journal of Plankton Research 16:1277–1301.CrossRefGoogle Scholar
  61. Stedmon, C. A. andS. Markager. 2001. The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea: An algorithm for differentiation between marine and terrestrially derived organic matter.Limnology and Oceanography 46:2087–2093.Google Scholar
  62. Stedmon, C. A., S. Markager, andH. Kaas. 2000. Optical properties and signatures, of chromophoric dissolved organic matter (CDOM) in Danish coastal waters.Estuarine Coastal and Shelf Science 51:267–278.CrossRefGoogle Scholar
  63. Steinberg, D. K., N. B. Nelson, C. A. Carlson, andA. Prusak. 2004. Production of chromophoric dissolved organic matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacteriumTrichodesmium spp.Marine Ecology Progress Series 267:45–56.CrossRefGoogle Scholar
  64. Stigertrandt, A. andF. Wulff. 1987. A model for the dynamics of nutrients and oxygen in the Baltic proper.Journal of Marine Research 45:729–759.CrossRefGoogle Scholar
  65. Thomann, R. V., D. M. Ditoro, R. P. Winfield, andD. J. O'Connor. 1975. Mathematical modeling of phytoplankton in Lake Ontario. I. Model development and verification. U.S. Environmental Protection Agency National Environmental Research Center, Office of Research and Development, Corvallis, Oregon.Google Scholar
  66. Thomann, R. V. andJ. J. Fitzpatrick. 1982. Calibration and verification of a mathematical model of the eutrophication of the Potomac Estuary. Department of Environmental Services, Government of the district of Columbia, Mahwaah, New Jersey.Google Scholar
  67. Twardowski, M. S., E. Boss, J. M. Sullivan andP. L. Donaghay. 2004. Modeling the spectral shape of absorption by chromophoric dissolved organic matter.Marine Chemistry 89:69–88.CrossRefGoogle Scholar
  68. Twardowski, M. S. andP. L. Donaghay. 2001. Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters.Journal of Geophysical Research 106:2545–2560.CrossRefGoogle Scholar
  69. Twardowski, M. S. and P. L. Donaghay. 2002. Photobleaching of aquatic dissolved materials: Absorption removal, spectral alteration, and their interrelationship.Journal of Geophysical Research 107∶doi∶10.1029/1999JC000281.Google Scholar
  70. United Nations Educational Scientific and Cultural Organization (UNESCO). 1983. Quantitative analysis and simulation of Mediterranean coastal ecosystems: The Gulf of Naples, a case study. UNESCO, Naples, Italy.Google Scholar
  71. Valiela, I., J. L. Bowen, andK. D. Kroeger. 2002. Assessment of models for estimation of land-derived nitrogen loads to shallow estuaries.Applied Geochemistry 17:935–953.CrossRefGoogle Scholar
  72. Valiela, I., G. Collins, J. Kremer, K. Lajtha, M. Geist, B. Seely, J. Brawley, andC. Sham. 1997. Nitrogen loading from coastal watersheds to receiving estuaries: New method and application.Ecological Applications 7:358–380.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2005

Authors and Affiliations

  1. 1.Department of Marine SciencesUniversity of ConnecticutGroton

Personalised recommendations